From Metabolomic profiling... to semi-targeted Metabolomics... to targeted assays... ...to working examples...

Dr Alexandros Pechlivanis

Untargeted Metabolomics

- Top down approach
- Qualitative/unbiased screening
- Discovery phase

Semi-targeted Metabolomics VS Targeted Assays

A class of compounds is already known as relevant to the biological question

- Chromatographic condition are "tailored" to that specific class. e.g. BAs, lipids, FAs etc.
- Saves time (and money) for the analysis.
- Results can be interpreted more readily
- TOF or triple quad instruments

Few compounds of interest, or compounds identified using untargeted assays

- Chromatography shorter
- Targeting and quantifying those compounds
- Triple quad/ trap instruments

Stratified Medicine in Primary Biliary Cholangitis (PBC):

Understanding Disease Mechanisms and Targeting Therapies (UK-PBC)

Few facts about the disease

- ➢ Infects mainly women (9:1) at the age 40-60 (35/100.000)
- Individuals who express the characteristic PBC autoantibody, antimitochondrial antibody (AMA) but who do not have liver injury (normal liver biochemistry);
- The daughters of mothers with PBC who run a 30-fold increased risk of PBC;
- Patients who have undergone liver transplantation for PBC and have a 1 in 3 chances of developing recurrent PBC within 5 years of their graft.
- UDCA as a damage control therapy, mitigating the toxic effects of hydrophilic BAs

Currently no approaches proven effective at preventing PBC in such "at risk" individuals

Breaking news

UK-PBC team helps new PBC drug to the point of licensing. UK-PBC investigators have been heavily involved in the FDA approval process for Obeticholic Acid, a novel drug for use in PBC patients unresponsive to UDCA.

On Thursday 7th April an independent Advisory Committee voted 17 to 0 to support FDA approval of OCA which will now be the first new drug approved for use in PBC in 20 years. Data from the UK-PBC played a key role in convincing the committee that there is significant unmet need in PBC and thus a need for new drugs.

the first new drug approved for use in PBC in 20 years!!!

Hypothesis

1) Profiling the PBC Metabolome

- 1) Untargeted screening
 - i. Using Nuclear Magnetic Resonance (NMR) Spectroscopy
 - ii. Using Ultra Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS)
 - iii. Using MS imaging to map the distribution of BAs and lipids in liver tissue
- 2) Targeted screening of bile acids, eicosanoids and lipids using UPLC-MS

Identification of biomarkers that are highly discriminatory between patient subgroups (responders and nonresponders to UCDA)

2) Profiling the gut microbiota using 16S rRNA genes and the 454 platform

- 1) Create inventories of the bacterial diversity using 454 sequencing
- 2) Taxonomic and diversity data
- 3) Determine total numbers of Bacteria and Archaea using qPCR for each kingdom's 16S rRNA genes
- 4) Identify bile salt hydrolase (BSH) and 7β hydroxysteroid dehydrogenases (HSDH) diversity using 454 sequencing

3) Profiling topographical distribution of biomolecules using Mass Spectrometry Imaging

- 1) Assess the distribution of bile acids (in particular UDCA) across liver biopsies from responders and non-responders
- 2) Obtain a global spectral profile of the topographical differences in tissue biochemistry using DESI Imaging Mass Spectrometry

Development of an efficient extraction method of Bile Acids from faecal The problem and now we tackle it material

The problem:

- 1. BAs are a very chemically diverse group of compounds. (from very hydrophilic to very lipophilic)
- 2. Faecal samples are very inhomogeneous.
- 3. Efficiency of currently used extraction protocols is poor.
- 4. There are currently in the literature many different approaches.

Our approach:

- 1. Use of fresh or lyophilized material?
- 2. Testing different solvent mixtures according to the literature/ lab practise;
- 3. Solid phase extraction (time consuming/ efficiency);
- 4. Single stage extraction (incomplete extraction of the different BAs);
- 5. Sequential extraction (more time consuming but more complete extraction) **The criteria:**
- Reproducibility, robustness, ease of use;
- The quantitative measurement of 56 BAs with use of UPLC-MS;
- Extraction efficiency varies 50-110%

Development of an efficient extraction method of Bile Acids from faecal material

Crucial steps in extraction procedure:

- Complete drying of the samples (stability/ homogeneity)
- The choice of the extraction solvent mixture(s)
- The cleanliness of the final extract (MS ion suppression/ chromatographic column life)

SPE for the extraction of BAs from fecal material

 SPE optimisation of loading/washing/elution steps was performed on Waters Oasis HLB plates

Single stage extraction of BAs

Single stage extraction of BAs

RT	Method	BA name
3.08	25% ACN	Tauro-a-muricholic Acid
3.08	25% ACN	Tauro-b-muricholic Acid
3.08	25% ACN	Tauro omega-Muricholic Acid
3.83	50% ACN	3,7,12 Dehydrocholic Acid
4.21	50% ACN	Taurohyocholic Acid
4.39	50% ACN	3a-OH-7,12-Diketocholanic Acid
4.55	50% ACN	Tauro-ursodeoxycholic Acid
4.87	H2O:ACN:IPA 2:1:1	Taurohyodeoxycholic Acid
5.07	H2O:ACN:IPA 2:1:1	Taurocholic Acid
5.19	50% ACN	Glycoursodeoxycholic Acid
6.22	50% ACN	12 Dehydrocholic Acid
6.66	50% ACN	a-Muricholic
6.74	50% ACN	b Muricholic Acid
6.85	H2O:ACN:IPA 2:1:1	Taurochenodeoxycholic Acid
6.85	H2O:ACN:IPA 2:1:1	Taurochenodeoxycholic Acid
7.29	H2O:ACN:IPA 2:1:1	3 Dehydrocholic Acid
7.29	50% ACN	Taurodeoxycholic Acid
7.34	H2O:ACN:IPA 2:1:1	Murocholic Acid
7.61	50% ACN	Glycochenodeoxycholic Acid
7.76	50% ACN	5a-Cholanic Acid-3,6-dione
7.86	H2O:ACN:IPA 2:1:1	Hyocholic acid
7.92	50% ACN/ H2O:ACN:IPA 2:1:1	3,7-Diketocholanic Acid
7.92	50% ACN	3,6-Diketocholanic Acid
7.92	H2O:ACN:IPA 2:1:1	3,12-Diketocholanic Acid
8.08	H2O:ACN:IPA 2:1:1	Glycodeoxycholic Acid
8.16	50% ACN/ H2O:ACN:IPA 2:1:1	5a-Cholanic Acid-3a-ol-6-one
8.16	50% ACN	Ursodeoxycholic acid
8.18	H2O:ACN:IPA 2:1:1	9(11), (5b)-Cholenic Acid-3a-ol-12-one
8.41	50% ACN/ H2O:ACN:IPA 2:1:1	Cholic acid
8.61	H2O:ACN:IPA 2:1:1	3a-Hydroxy-7 Ketolithocholic Acid
8.69	H2O:ACN:IPA 2:1:1	Hyodeoxycholic acid
8.94	H2O:ACN:IPA 2:1:1	3a-Hydroxy-12 Ketolithocholic Acid
8.96	50% ACN/ H2O:ACN:IPA 2:1:1	5b-Cholanic Acid-3b, 12a-diol
8.96	50% ACN	Tauro-ursocholanic Acid
9.57	50% ACN/ H2O:ACN:IPA 2:1:1	23-nor-5b-Cholanic Acid-3a, 12a-diol
9.83	50% ACN/ H2O:ACN:IPA 2:1:1	Glycolithocholic Acid
9.85	H2O:ACN:IPA 2:1:1	5b-Cholenic Acid-7a-ol-3-one
10.16	H2O:ACN:IPA 2:1:1	5-Cholenic Acid-3b-ol
10.26	50% ACN/ H2O:ACN:IPA 2:1:1	Chenodeoxycholic Acid
10.34	50% ACN/ H2O:ACN:IPA 2:1:1	Allolithocholic Acid
10.37	50% ACN	Deoxycholic Acid
10.48	50% ACN	Isolithocholic Acid
10.68	50% ACN/ H2O:ACN:IPA 2:1:1	3-Ketocholanic Acid
10.68	50% ACN	Lithocholenic Acid
10.82	50% ACN/ H2O:ACN:IPA 2:1:1	Lithocholic acid
10.93	H2O:ACN:IPA 2:1:1	Taurolithocholic Acid

Sequential extraction of BAs (aqueous/organic)

Sequential extraction of BAs (aqueous/organic)

★ Aqueous solvent mix consist of 50% organic solvent (ACN)

		Acqueous				Organic			
	Retention time	Average intensity	St.dev	RSD%	% of total signal	averag e	St.dev	RSD%	% of total signal
LCA-d4	10.77	4121.047	2436.668	59.12741	56.36	3189.929	344.178	10.78952	43.64
UDCA-d4	7.96	14333.67	5792.54	40.41212	75.22	4722.497	1010.89	21.40584	24.78
TDCA-d4	6.8	5212.718	3286.081	63.03969	99.13	45.63335	28.38799	62.20885	0.87
TCA-d4	4.67	38207.5	14835.3	38.82825	99.71	110.469	42.61309	38.57468	0.29

Quantitation of BAs via the SA-IS method.

- More labour intensive and less precise than the calibration curve method.
- It provides better accuracy on complicated samples.
- Compensates for the matrix effect on accuracy and precision
- The use of IS compensates for incomplete and variable extraction

Take home message

- Samples have to be thoroughly dried (stability/extraction efficiency)
- > The best overall extraction solvent $H_2O:ACN:IPA$, 2:1:1.
- > Filtration of the extract with the use of spin-filter is recommended.
- The use of H₂O:ACN:IPA, 2:1:1 as an extraction solvent obviates the need of drying down/reconstitution.
- ➤ Use of 1% F.A in the extraction solvent can increase yield.
- Use of SA-IS method to build the calibration curves (laborious...but worth the pain!)
- Due to the big dynamic range of concentrations, might need to rerun some of the samples diluted (make sure enough volume)
- > Attention has to paid when preparing LC solvents (RT highly dependent on pH)
- > Always run the samples using MS^E function to get information about conjugation

Targeted UPLC-MS bile acid assay

pubs.acs.org/ac

Bile Acid Profiling and Quantification in Biofluids Using Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry

Magali H. Sarafian,^{†,#} Matthew R. Lewis,^{†,‡,#} Alexandros Pechlivanis,[†] Simon Ralphs,[§] Mark J. W. McPhail,[§] Vishal C. Patel,[⊥] Marc-Emmanuel Dumas,[†] Elaine Holmes,[†] and Jeremy K. Nicholson^{*,†}

[†]Imperial College of London, Division of Computational Systems Medicine, Department of Surgery and Cancer, Sir Alexander Building, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom

[‡]Imperial College of London, MRC-NHR National Phenome Centre, Department of Surgery and Cancer, IRDB building, Du Cane Road, London W12 0NN, United Kingdom

[§]Imperial College of London, Department of Hepatology, St. Mary's Hospital, Paddington, London, United Kingdom

¹King's College London, Institute of Liver Sciences, Hospital NHS Foundation Trust, Division of Transplantation Immunology and Mucosal Biology, MRC Centre for Transplantation, London, United Kingdom

Faecal microbiota transplantation (FMT) is really working...

Hypothesis:

- Faecal microbiota transplantation (FMT) as a cure for *Clostridium difficile* infection (CDI)
- CDI is characterised by perturbed bile acid metabolism, and FMT may exert its efficacy through reestablishment of gut microbiota that restore this process to normal.

Methods:

- Stool samples from healthy volunteer donors participating in an FMT programme
- serial stool samples from a patient successfully treated with FMT for refractory CDI, pre- and posttransplantation.
- Samples were assayed for structure of the gut microbiota using 16S rRNA gene sequencing, and for BA profiling via UPLC-MS.
- Presence of bile salt hydrolases (responsible for deconjugation of glycine- and taurine-conjugated primary bile acids within the gut) was assessed via PCR of bacterial DNA extracted from stool.

Faecal microbiota transplantation (FMT) is really working...

Results:

- Modest improvement in diarrhoea after a first FMT, but an immediate, complete and sustained resolution of symptoms after a second FMT from a different donor (performed two weeks after the first).
- 16S rRNA gene sequencing demonstrated a pattern of faecal bacterial communities that closely resembled that of the healthy donors by one week after the second FMT.
- Faecal LC-MS analysis revealed the patient's gut bile acid profile pre-FMT to be enriched sixfold in TCA, Post-FMT the patient's gut bile acid profile resembled that of healthy donors, with loss of TCA and enrichment of secondary bile acids
- PCR of bacterial DNA displayed no detectable BSH genes in the recipient either pre-FMT or by day 7, but BSH presence was confirmed in both donors, as well as in the recipient by one week following the second FMT.

Let's fly to a different place....

The PROLIFICA project

- Discovery and validation of urinary biomarkers for the diagnosis of HCC in West Africans
- Hepatocellular carcinoma (HCC), the most common primary liver cancer, carries a poor prognosis. The mortality-to-incidence ratio of HCC approaches unity in most developing countries as a result of very late diagnosis.
- We have used a two-stage metabonomic strategy for the discovery and validation of a biomarker panel for the early diagnosis of HCC.
- In an initial phase, untargeted profiling of two sets of urine samples by UPLC-ESI- QTof MS was performed at Imperial College London for the detection and identification of disease biomarkers. Urine of patients from Nigeria and Gambia with HCC, cirrhosis, non-cirrhotic liver disease and healthy controls were compared.
- In the second step, the identified metabolites were used to develop a targeted MS method using the triple quadrupole (TQ) mass spectrometer donated by Waters in 2012 to the PROLIFICA project (UPLC-TQ MS system based in the MRC-The Gambia unit).

Methods

UPLC	Profiling method	Targeted method
method		
Run time	25 min per sample	12.5 min per
	(1 chromatographic run of 12.5	sample
	min per polarity)	(1 single run, both
		polarities)
Column type	HSS T3, 2.1 X 150 mm	HSS T3, 1 X 100
		mm
Column	45 °C	40°C
temperature		
Flow rate	0.6 ml/min	0.21 ml/min

Reduction in run time and in flow rate allows decreasing significantly the consumption of solvent, which is critical in the developing world.

A)

The metabolites panel

	ID	RT (min)	m/z	lon	Formula
1	1-Methylnicotinamide	0.57	137.071	[M+H] ⁺	$C_7H_9N_2O$
2	Acetylcarnitine	0.97	204.124	[M+H] ⁺	$C_9H_{17}NO_4$
3	Propionylcarnitine	1.58	218.139	[M+H] ⁺	$C_{10}H_{19}O_4$
4	Hydroxyphenyllactic acid	2.65	181.05	[M-H] ⁻	$C_9H_{10}O_4$
5	Homovanillic acid	2.78	261.006	[M-H] ⁻	$C_9H_{10}O_7S$
6	Kynurenic acid	2.85	190.051	[M+H] ⁺	$C_{10}H_7NO_3$
7	4-Hydroxybenzaldehyde	3.59	121.028	[M-H] ⁻	$C_7H_6O_2$
8	Indole lactic acid	4.38	204.065	[M-H] ⁻	$C_{11}H_{11}NO_3$
9	L-Octanoylcarnitine	5.59	288.217	[M+H] ⁺	$C_{15}H_{29}NO_4$
10	Glycocholic acid	7.38	464.301	[M-H] ⁻	$C_{26}H_{43}NO_6$
11	Glycochenodeoxycholic acid-3- sulfate	7.85	528.263	[M-H] ⁻	$C_{26}H_{43}NO_8S$

The LCMS lab in The MRC Gambia

Future Directions

- Further statistical analysis ongoing
- Added investigations on the performance of the panel of identified biomarkers as an early diagnostic tool for liver cancer
 - ✓ Association of urinary metabolites with HCC stage
 - ✓ Testing diagnostic accuracy of panel AUROC curves
- Analysis of new urine samples by the developed targeted method
 - ✓ Larger cohort of samples
 - ✓ Use of 8 internal standards for absolute quantification

The ultimate goal of this study is the development of a urinary-based test (dipstick type) for use at the village level in Africa for screening of at-risk populations.

Acknowledgements

Imperial College

- Dr Konstantina Spagou
- Dr Maria Gomez Romero
- Dr Magalie Sarafian
- Dr Matthew Lewis
- Dr Panos Vorkas
- Dr Benjamin Mullish
- Anna Mroz
- Prof Elaine Holmes
- Prof Simon Taylor-Robinson
- Prof Mark Thursz
- Prof Zoltan Takats

PROLIFICA Project

- Dr Ramou Njie
- Dr Haddy KS Fye
- Omar Jawara
- The PROLIFICA Team
- Waters

