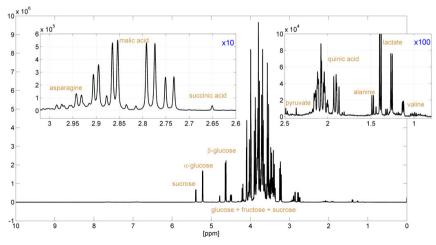


RECENT DEVELOPMENTS IN FOOD SCREENING BY NMR

Claudia Napoli – Bruker Italia Claudia.Napoli@bruker.com

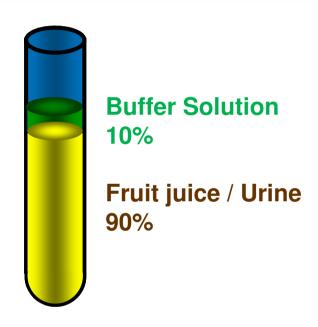
Food Scandals in recent years

http://www.khd-research.net/Food/LM_Skandale_4.html#AKTUELL



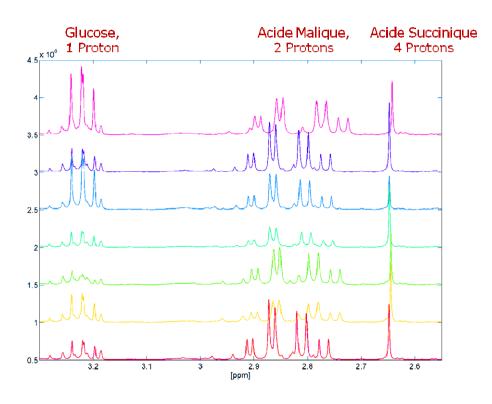
Red wine from the test tube	December 2005
Juices in Tetra-Paks polluted by ITX print chemical	January 2006
Benzene in fruit drinks	March 2006
Cheap Vodka poisons thousands in Russia	October 2006
Wine adulteration in Italy	March 2008
Milk scandal in Bavaria	June 2008
Adulteration of wine and champagne by glycerol	June 2008
Poisoned hard liquor in Turkey	March 2009
Artifical (analog) cheese rapidly increasing	April 2009
People died: cheese made from unpasteurized milk	January 2010
10 Mio. Liter falsified Chianti	May 2010
Bavarian mozzarella got blue	June 2010
Melamine in Chinese food	July 2010

Features of 1H NMR based screening


- All type of samples measurable: liquid, semi-solid, solid
- Quantitative detection of all proton-carrying molecules
- The spectrum corresponds to a highly specific fingerprint
- Targeted / Non targeted analysis in a single experiment

Example of an apple juice spectrum

Advantage of NMR Minimal sample preparation

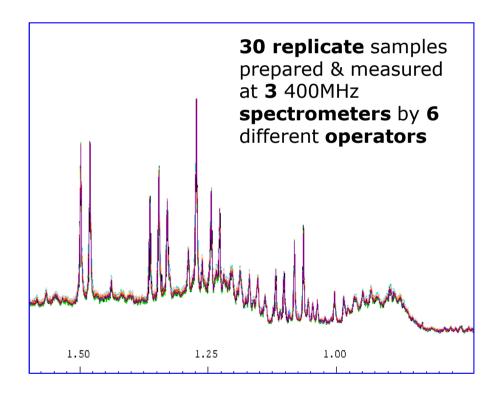


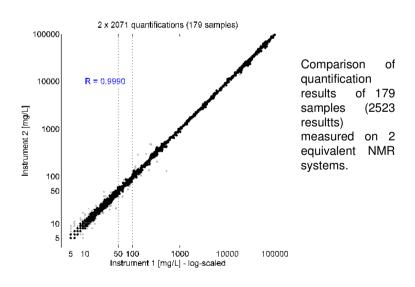
Total sample volume of 600 µl in NMR tubes of 5mm

Advantage of NMR NMR is quantitative

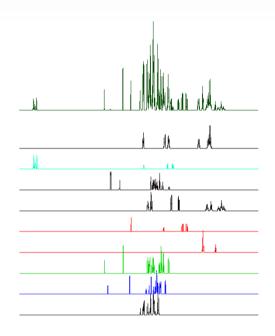
• NMR is inherently quantitative

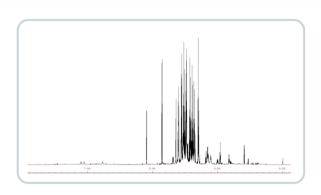
- ✓ Integral of a signal is directly proportional to molar concentration
- ✓ Only one calibration for the quantification of all compounds in a mixture

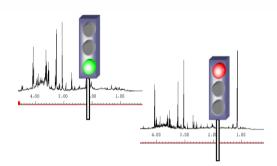


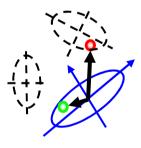

Advantage of NMR Highest Reproducibility

 Highest reproducibility → allows to detect even the smallest variations in concentration of all relevant compounds


 Inter-instrumental reproducibility (at same magnetic field strenght)



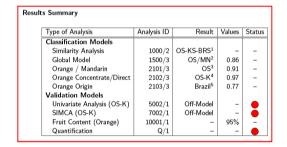

Applications of 1H NMR screening



Fingerprint/profil

Targeted

Identification & quantification of targeted compounds


Non targeted

Statistical models for classification and verification of samples

NMR as Pre-Screening Method

Each Sample:

esults Summary				
Type of Analysis	Analysis ID	Result	Values	Status
Classification Models				
Similarity Analysis	1000/2	AS-KS-VRC1	_	_
Global Model	1500/3	AS ²	0.93	_
Apple Concentrate/Direct	2201/3	AS-K ³	0.99	_
Apple Origin	2202/4	AS-VRC⁴	0.84	_
Validation Models				
Univariate Analysis (AS-K-VRC)	5007/1	In-Model	_	
SIMCA (AS-K-VRC)	7007/1	In-Model	_	
Fruit Content (Apple)	10000/1	_	100%	
Quantification	Q/1	_	_	

Sample not OK

Confirmation by conventional analyses

Sample OK

OK, no further effort needed

(except e.g. pesticides, minerals)

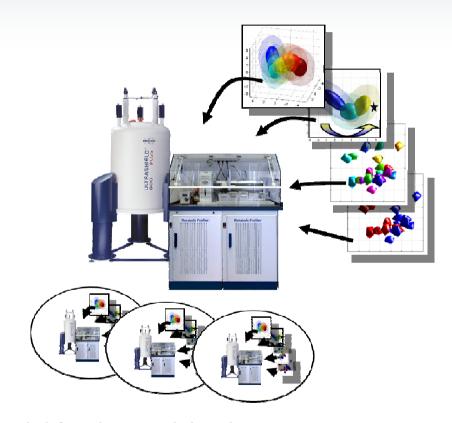
Standard Operation Procedures SOPs

SOPs are one of the most important features for comparable spectra and correct quantification

- Sample collectionSample storage
- Sample preparation
- Measurement

```
Temperature equilibration
Automatic tuning and matching
Lock
Shim
Lockphase optimization
Pulse-calibration, Adjustment of all power levels
Generation of shape pulse in case of multiple suppression
1D acquisition
fast 2D-J-Resolved acquisition
```

- Processing
- Post processing


Transferability of statistical models

Need of common standard and protocols in order to secure models and their applicability

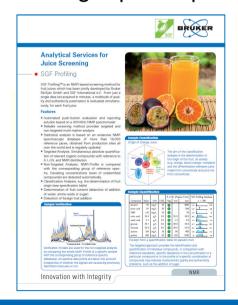
Models need to be applicable to data generated :

- By someone else
- At an other spectrometer
- In another lab
- Anywhere in the world
- At any time

Essentiel for the participation to:

- Long-term studies
- Multi-center studies

Bruker-SGF Fruit Juice Screener



The first NMR push button system

from

order input to final report

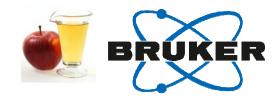
providing rapid response

400 MHz system
5mm Probe
Z-Grad, Automatic Tune/Match

1H-NMR profiling features

- Full Automation (Acquisition → Reporting)
- Only one measurement (~ 20 minutes)
- Semi automatic preparation
- Targeted Analysis
 - Quantification of tens of compounds
- Non-Targeted Analysis (Statistics)
 - Check of authenticity
 - Check of quality
 - Detection of frauds
- Summary of all results in PDF file

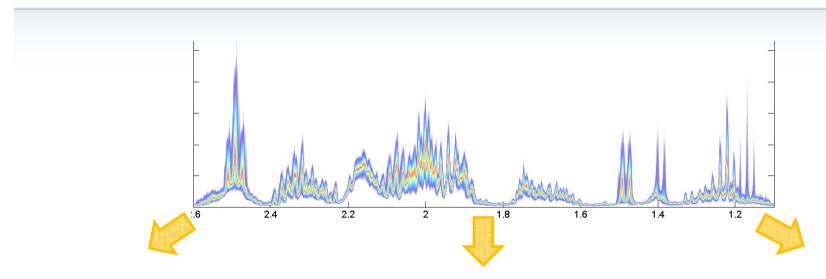
Proof-of-Principle

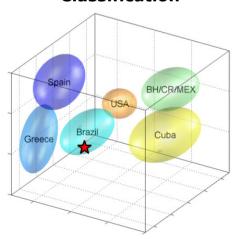

Same Methodology for other Areas of Mixture Analysis

- Food
 - Wine
 - Honey
 - Edible oil
 - Soft-Drinks
 - Milk, Milk-Powder
- Biofluids (600 MHz)
 - Urine
 - Plasma

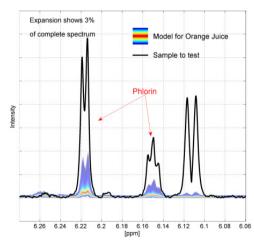
Automatic Report Fruit juice-Screener

				A.I.J.N.		9	SGF-Profiling		√ 47.9 → 77.
Compound	Result	Unit	Flag	min	max		n = 2733		11.
5-hydroxymethylfurfural	N/Q	mg/l		-	20	0		16	6
D-galacturonic acid	410	mg/l		-	-	0		1950	0
acetaldehyde	<5	mg/l		-	-		not detectable		
acetoine	N/Q	mg/l		-	-		not detectable		12.6
alanine	43	mg/l		1	50	10		53	
arbutin	N/Q	mg/l		-	-		not detectable		
benzaldehyde	N/Q	mg/l		-	-		not detectable		0 41
benzoic acid	N/Q	mg/l		-	-		not detectable		
chlorogenic acid	69	mg/l		-	-	0		227	$7 \mid 2.2 \mid 9.$
citramalic acid	34	mg/l		-	-	3		114	
citric acid	N/Q	g/l		-	0.15		not detectable		10
ethanol	14	mg/l		-	3000	0	<u> </u>	619	。
formic acid	<5	mg/l		-	-	0		17	7 /
fructose	63.6	g/l		45.0	85.0	47.9		77.9	9 ' 4 4
fumaric acid	13	mg/l		-	5	0		6	
glucose	31.8	g/l		15.0	35.0	12.6		34.9	9 142 110
lactic acid	650	mg/l	● ↑	-	500	0		414	143 119
malic acid	3.4	g/l		3.0	-	2.2		9.8	8
methanol	N/Q	mg/l		-	-	0		194	not detectable
pyruvic acid	11	mg/l		-	-	4		44	4
quinic acid	1166	mg/l	Ō	-	-	143		1192	2 5
sorbic acid	N/Q	mg/l		-	-		not detectable		5 7
succinic acid	88	mg/l		-	-	5		77	7
sucrose	8.7	g/l		5.0	30.0	6.5		39.6	∮ ↑ — 99% — ↑ •
Report of a non-conformous apple juice									


Conclusions made by Quantification


- Sugar profile ⇒ Addition of sugar
- Acids profile ⇒ Addition of acids
 - e.g.: Citric acid, malic acid in apple Juice
- Ratio Malic acid / Quinic acid
 - Ripeness of the fruit
- Ratio Citric acid / Iso-citric acid in lemon juice
 - Addition of citric acid
- Concentration of galacturonic acid
 - Enzymatic treatment of the fruits (e.g. in apple juice)
- Concentration of Phlorin in citrus fruit
 - Usage of peels in the juice
- Concentration of lactic acid, fumaric acid, formic acid, ethanol, HMF
 - Quality parameters
- Addition of another fruit
 - e.g. pear in apple juice (marker: arbutin)

Applications of statistical analysis



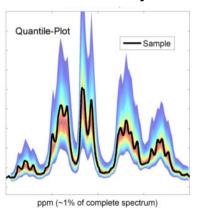
Classification

Verification

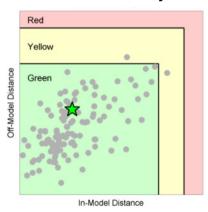
Indirect Quantification of componants by Regression

Parameter	Result	Unit
Total Acid pH 7	112	meq/l
Total Acid pH 8.1	118	meq/I
Total Acid (pH 7, tartaric acid)	8.4	g/l
Total Acid (pH 7, malic acid)	7.5	g/l
Total Acid (pH 8.1, citric acid)	7.6	g/l
Potassium	1808	mg/l
Magnesium	103	mg/l

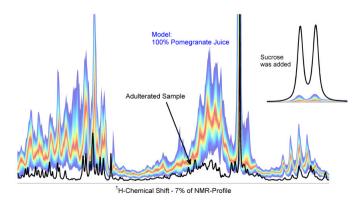
Verification of samples


NMR profile is compared with the corresponding group of reference spectra

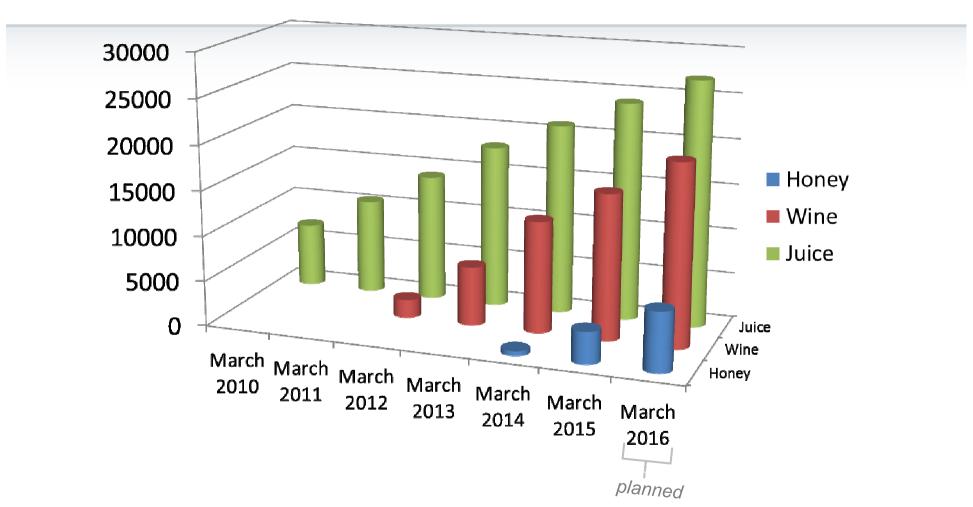
Reference Spectral database > 20.000 samples


Verification models include uni-variate and multivariate models

Univariate analysis

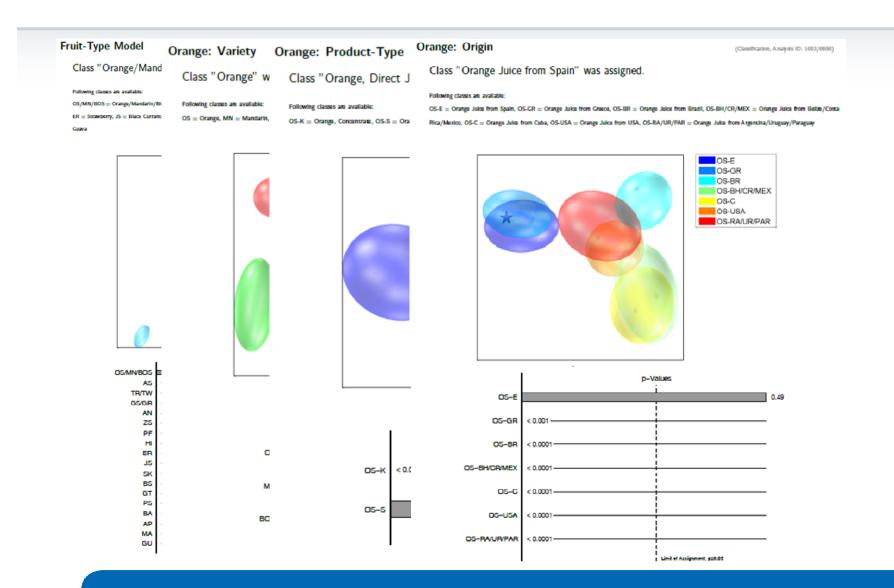


Multivariate analysis


Possibility to detect atypical deviations, unexpected frauds

Examples in juices: falsifications, adulteration, illegal production process, fruit blending, lower fruit content...

Authentic samples databases



For every matrix: 3000 – 4000 samples per year

PDF report: classification models

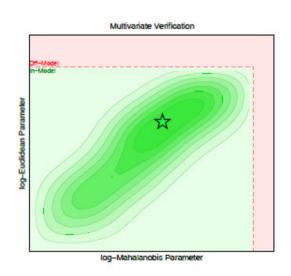
PDF report: verification results

Verification Models

Applied Model: Orange from Europe

Univariate Verification

(Wriffication, A


Result: Deviating signals were found at following chemical shifts:

1.387up 1.404up

Multivariate Verification

(Verification, A.

Result: No deviation was detected in multivariate verification (In-Model).

Fruit Content

Applied Model: Orange, Spain

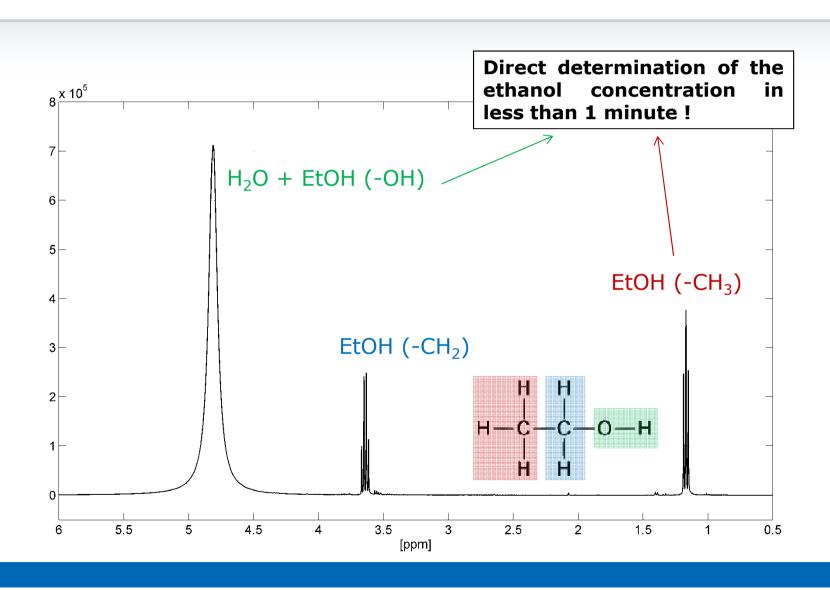
Fruit Content is consistent compared to 100%: Yes

Blend Citrus Sinensis/Reticulata

Model: Model could not be applied.

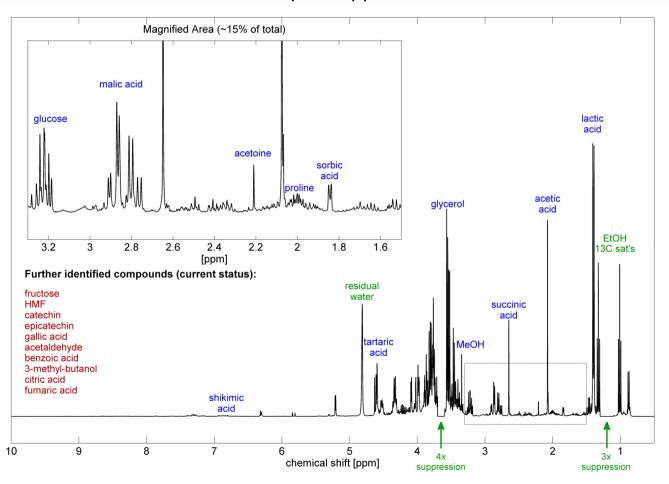
Due to detected deviations in verification analysis, fruit blending models have not been applied.

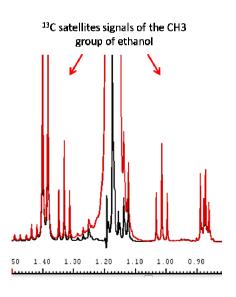
Wine Analysis and Requests


Wine by NMR:

- Replaces conventional, targeted wine analysis (currently ~ 60 compounds quantified)
- Determination of grape variety
- Geographical origin for selected regions
- Company product profile NMR
- Detection of irregularities of any kind

Proton spectrum of wine: Direct measurement





Multi-suppression on ethanol and water

Multiple Suppression with 8 irradiation bands

Automated quantification and reporting

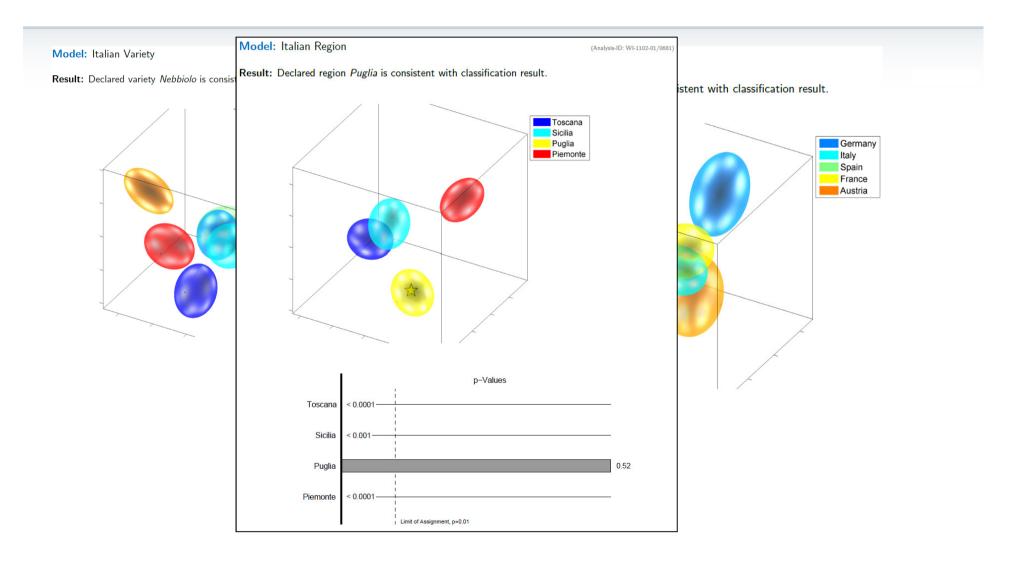
Targeted Analysis

In the following tables the results of the quantitative analysis are given. Parameters labelled with * are calculated parameters. Please refer to the additional remarks for quantified parameters, flags and reference values on page 8. The displayed distributions of the Wine-Profiling $^{\text{TM}}$ NMR reference database refer to group Tempranillo.

Standard Parameters:

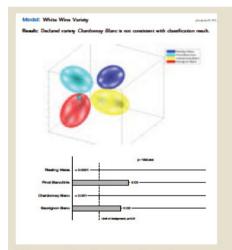
					Official Ref.		Wine-Profiling TM
Compound	Value	Unit	LOQ	Flag	min	max	NMR reference database
total alcohol*	116.5	g/L	-	0	-	-	98.3
total alcohol-v*	14.8	%vol	-	\circ	-	-	12.5
ethanol	116.1	g/L	5.0	\circ	-	-	98.0
ethanol-v*	14.7	%vol	-	\bigcirc	-	-	12.4
glycerol	9.7	g/L	0.5	\circ	-	-	4.4 10.6
glucose	< 0.5	g/L	0.5	\bigcirc	-	-	<0.5
fructose	<0.5	g/L	0.5	\circ	-	-	<0.5
glucose/fructose*	-	-	-	\bigcirc	-	-	not available
sucrose	<0.2	g/L	0.2		-	-	<200 mg/L in reference set
arabinose	448	mg/L	100	\circ	-	-	<100
total sugar (bef. inv.)*	<1.0	g/L	1.0	\bigcirc	-	-	<1.0 9.2
total fermentable sugar*	<1.0	g/L	1.0	\circ	-	-	<1.0 9.2
tartaric acid	2.1	g/L	0.5		-	-	1.3 2.8
malic acid	<0.2	g/L	0.2	\bigcirc	-	-	<0.2
lactic acid	1.5	g/L	0.2	\circ	-	-	0.9 3.4
citric acid	<200	mg/L	200		-	1000	<200 218
energy value*	3650	kJ/L	-	\bigcirc	-	-	3080 3970
bread units*	<0.2	1/L	0.2	\circ	-	-	<0.2
carbohydrate units*	< 0.2	1/L	0.2	\bigcirc	-	-	<0.2

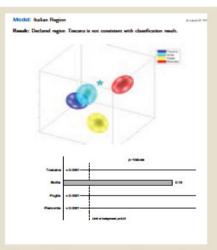
Degradation Parameters:

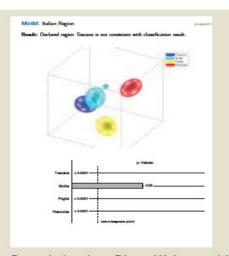

					Official Ref.		Wine-Profiling [™]	
Compound	Value	Unit	LOQ	Flag	min	max	NMR reference database	
acetic acid	733	mg/L	100	0	-	-	355 970	
acetoine	12	mg/L	10	0	-	-	<10 64	
ethylacetate	169	mg/L	50	0	-	-	<50 212	
ethyllactate	325	mg/L	150	0	-	-	<150 450	
formic acid	9	mg/L	5	0	-	-	<5 13	
fumaric acid	<5	mg/L	5	0	-	-	<5 mg/L in reference set	
gluconic acid	<400	mg/L	400		-	-	<400 mg/L in reference set	
putrescine	<50	mg/L	50	\circ	-	-	<50 75	
cadaverine	<50	mg/L	50	\circ	-	-	<50 mg/L in reference set	
HMF	<5	mg/L	5		-	-	<5 mg/L in reference set	
furfural	<2	mg/L	2	\circ	-	-	<2 mg/L in reference set	

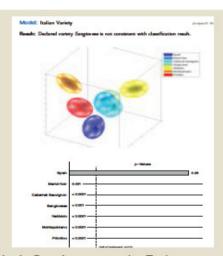
Higher Alcohols / Fermentation Products:

					Offici	al Ref.	Wine-Profiling TM
Compound	Value	Unit	LOQ	Flag	min	max	NMR reference database
methanol	190	mg/L	30		-	400	<30 191
1,3-propanediol	<40	mg/L	40	\circ	-	-	<40 359
2,3-butanediol	727	mg/L	100	\circ	-	-	265 1100
2-methyl-propanol	<70	mg/L	70	\circ	-	-	<70 80
2-phenylethanol	61	mg/L	25	\circ	-	-	<25 73
3-methyl-butanol	237	mg/L	100	\circ	-	-	143 282
acetaldehyde	<10	mg/L	10	\circ	-	-	<10 39
pyruvic acid	<20	mg/L	20		-	-	<20 mg/L in reference set
galacturonic acid	1.3	g/L	0.2	\circ	-	-	0.2
succinic acid	965	mg/L	50	\circ	-	-	490 1100
glycerol/ethanol*	8.3	%	-		-	-	4.3 9.4


Non targeted analysis


QC in German Supermarkets using Wine-Profiling


Dieser »Chardonnay« besteht aus Pinot Grigio und Sauvignon Blanc


Chardonnay really is mix of Pinot Grigio + Sauvignon blanc

Dieser Wein stammt nicht aus der Toskana, sondern aus Sizillien

Wine not from Tuscany as labeled, but from Sicily

Doppelt daneben: Dieser Wein, angeblich ein Sangiovese aus der Toskana, ist ein Syrah aus Sizilien

Double fraud, labeled as Sangiovese from Tuscany really is a Syrah from Sicily

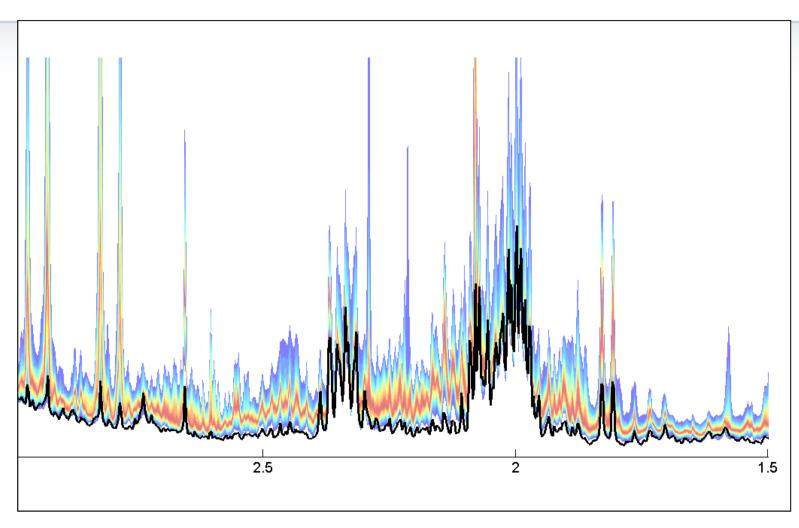
Honey frauds

If pollen are removed, conventional analysis can not detect origin or type of honey, while NMR still can.

The following syrups show a marker to identify addition to honey:

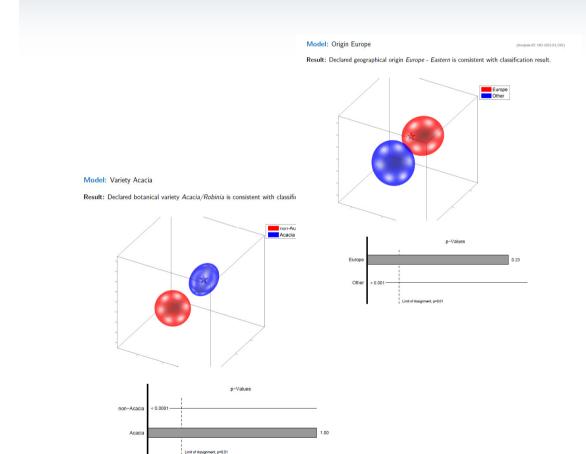
- Some Fructose/Glucose syrups available large scale on the market derived from corn
- Agave Sirups and products thereof (in Germany Schneekoppe, ...)

The marker is not found in the following syrups tested so far:


- Rice
- Sugar-cane
- Sugar-beet
- Bee-feed (sirup or dough)

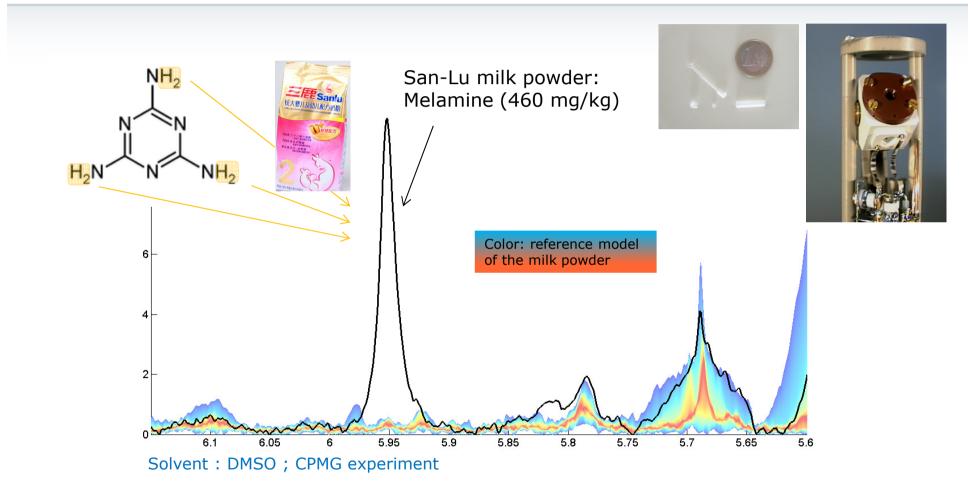
Without marker only dilution detection can be used: needs NMR and well populated authentic honey database

Honey frauds



Normal Model Blossom Honey + new sample with sugar syrup addition

Honey profiling



Compound	Value	Unit	NMR Distribution
5-hydroxymethylfurfural	44	mg/kg	<5 71
L-pyroglutamic acid	<30	mg/kg	<30 380
acetic acid	17	mg/kg	7 140
acetoin	<5	mg/kg	<5 10
alanine	<5	mg/kg	<5 120
citric acid	<100	mg/kg	<100 834
ethanol	28	mg/kg	<10 1025
formic acid	12	mg/kg	<5 226
fructose	40.2	g/100g	28.5 40.8
fructose / glucose	1.58	-	0.93
glucose	25.4	g/100g	21.9 35.2
glucose + fructose	65.6	g/100g	51.1 72.5
isoleucine	<50	mg/kg	<50 83
leucine	<50	mg/kg	<50 113
malic acid	<100	mg/kg	<100 839
maltose	0.8	g/100g	<0.5
melezitose	1.0	g/100g	<0.2
phenylalanine	11	mg/kg	<10 813
proline	217	mg/kg	<100 877
shikimic acid	<50	mg/kg	<50 192
succinic acid	8	mg/kg	5 209
sucrose	1.5	g/100g	<0.5
trigonelline	<10	mg/kg	<10 33
tyrosine	<50	mg/kg	<50 250
valine	<10	mg/kg	<10 51

Study of milk powder in semi-solid state

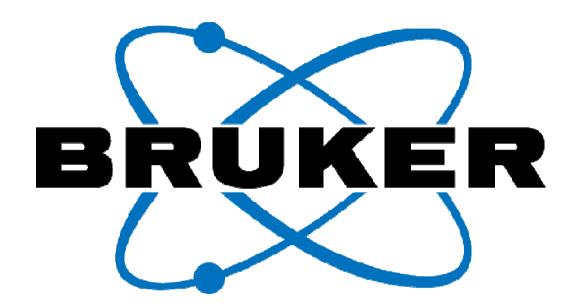
Melamine can be quantified directly

(Integral corresponds to 6 Protons, M = 126 g/mol)

Conclusions

NMR in high throughput mode can generate a multitude of targeted and untargeted results in one measurement, such offering best analytical value at low price per sample.

SGF-Profiling for the screening of fruit juices can be seen as **proof-of-principle** for other upcoming applications. The same workflow and underlying mathematical methods can be easily transferred to other quality control application as well as to a wide range of clinical/medical applications.


Multiple suppression helps in the detection of small signals in the presence of very large signals.

Easy sample preparation in all applications.

Thank you for your kind attention!

Innovation with Integrity