From Profile to Mechanistic Understanding

lan D Wilson

Imperial College London i.wilson@imperial.ac.uk

Metabolic Phenotyping

- Metabonomics/metabolomics untargeted (and intended to be unbiased) metabolic profiling of biological samples
- The aim is to find "biomarkers" in areas such as basic biology, disease, toxicity etc.
- Ideally these should be mechanistic and specific for the condition under investigation
- Often they are not.....

Biochemical Pathways	A CARL CONTRACTOR OF CONTRACTO			
	SIS			
				n

From Metabolic Phenotyping to Biomarkers

Global profiling – unbiased biomarker **Discovery**

Targeted classes of compounds - Quantification

Targeted pathways - Confirmation

A Rodent Model of Alcoholism

- A rodent model of alcoholism, mice/rats fed intra-gastrically with ethanol.
- Urine and liver extracts analysed by UPLC-MS with PCA for "biomarker" detection.
- What do we see? And what does it tell us?

No. 2012/04/2012 DOM: NO. 10/10/10/2012 DOM: NO. 10/10/2012 DOM: NO. 10/10/2012 DOM: NO. 10/10/2012 DOM: NO. 10

Liver "biomarkers" of alcohol treatment

Paracetamol Toxicity

- Paracetamol (acetaminophen) is a safe drug when taken at therapeutic doses but a major human hepatotoxin in overdose
- Results in a very large number of liver transplants
- Toxicity is the result of the formation of reactive metabolites

Paracetamol Metabolism

Matabonomics & Paracetamol Toxicity

- F.Y. Ghauri *et al* Induction of 5-oxoprolinuria in the rat following chronic feeding with N-acetyl 4 aminophenol (paracetamol), *Biochem. Pharmacol.* 46 (1993) 953–957.
- An NMR-based study examining rat urine
- **T. Soga** *et al* Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption, *J. Biol. Chem. 281 (2006) 16768–16776.*
- A CE-MS-based study in mice

Elevated 5-Oxoproline reported in human overdose translatable to humans......

5-Oxoproline–Induced Anion Gap Metabolic Acidosis After an Acute Acetaminophen Overdose

David T. Lawrence, DO; Laura K. Bechtel, PhD; Nathan P. Charlton, MD; and Christopher P. Holstege, MD

5-OXOPROLINEMIA CAUSING ELEVATED ANION GAP METABOLIC ACIDOSIS IN THE SETTING OF ACETAMINOPHEN USE

Patil Armenian, мр,* Roy R. Gerona, PHD,† Paul D. Blanc, мр,*‡ Alan H. B. Wu, PHD,* and Somnath Mookherjee, мр‡

*Division of Clinical Pharmacology, California Poison Control System, San Francisco Division, †Department of Laboratory Medicine, San Francisco General Hospital, and ‡Department of Medicine, University of California-San Francisco, San Francisco, California Reprint Address: Patil Armenian, MD, California Poison Control System, San Francisco Division, UCSF Box 1369, San Francisco, CA 94143-1369

So what is the role of 5-oxoproline?

5-Oxoproline & Glutathione Biosynthesis

Opthalmic acid Biosynthesis

Why are these metabolites biomarkers?

- Paracetamol is toxic via reactive metabolites formed by cytochrome P450 2E1
- The reactive quinoneimine metabolite is detoxified by conjugation with glutathione
- Depletion of glutathione is followed by damage to cellular macromolecules and cell death
- 5-oxoproline (pyroglutamate) and opthalmic acid are involved in the biosynthetic pathways that relate to glutathione
- Why both metabolites? What are these biomarkers telling us? which is one is best? Or do you need both?
- Can we model it using systems biology?

The model

• Kinetic model - reversible Michaelis-Menten equations

- Used mostly literature values
- V_{max} and unknown parameters were fitted to experimental data

Fitting to experimental data

- Use an in vitro cell model (THLE-2E1cells)
- Incubate cells at three paracetamol concentrations: 0, 5mM and 25mM
- Measure (LC-MS) the concentration of metabolites in the glutathione pathway (intracellular and extracellular)
 - Measured 15 fluxes and concentrations using quantitative targeted metabolite determination by LC-MS

Experiment vs Model

Model predicts control in glutamylcysteine synthetase (GCS)

- Metabolic control analysis
- At 25mM paracetamol V_{GCS} had a control of:
 - 1 on 5-oxoproline flux
 - 0.9 on GSSG synthesis
 - 2 on GSH export

Increases in GCS reported in the literature

GCS activity vs paracetamol exposure

Enzyme activity assay

Add adaption of GCS to model

Good fits for GSH, OPA & 5-Oxo concentrations and fluxes

Biomarking two stages of toxicology

- Stage 1:
 - Paracetamol-conjugate formation
 - Glutathione synthesis increases
 - No depletion in cellular glutathione
- Stage 2:
 - Paracetamol-conjugate formation
 - Methionine and cysteine depleted
 - Glutathione synthesis decreases
 - Depletion of cellular glutathione

5-oxoproline

Ophthalmic acid

Biomarkers complement each other

• *In vitro* measuring biomarkers simultaneously will give unique glutathione concentration

In vitro to in vivo –

Physiologically Based PK Modelling (PBPK)

Organism mathematically described as a series of compartments that represent tissues and organs

- Arranged to reflect anatomical layout
- Connected by the arterial and venous pathways
- Defined using literature tissue volumes and blood flow rates
- Progress of drug through the body can be followed by defining the discrete ADME properties

Model for Both Drug and Biomarkers

Before simulating the effects of paracetomol on the biomarkers we need to know that the PBPK models reproduces the²⁷literature results.

Paracetamol in Humans: Actual vs Predicted

Simulating the effects on 5-oxo and OPA after dosing paracetomol

Biomarker s raised in blood and urine

Conclusions

- Biomarkers discovering metabolites as *potential* biomarkers is easy
- But they only become real biomarkers when they have been validated
- And are only useful when you understand what they are telling you
- Biomarker validation requires targeted methods and bespoke studies
- Systems Biology should be a key to deeper understanding

Acknowledgements

- Robert S. Plumb, Elaine Holmes, Jeremy K. Nicholson
- Eleni Gika, Filippos Michopoulos, Georgios Theodoridis
- Suzanne Geenen, Hans Westerhof
- Neil Loftus, Neil Kaplowitz, Cheng Ji