Commercial and non- commercial software How do these work together and can benefit form one another?

Some examples

Aiko Barsch, Market Manager Metabolomics, Bruker Daltonics, Bremen, Germany

Example: Coffee Metabolomics

- 13 different coffee capsule types:
 - QC sample: mix of all analytical samples
 - Extracted 2 times each with 35 ml water
 - using XN 3005 Nespresso Pixie espresso machine (Krups)
- Samples centrifuged and diluted 1:50 with water
- Injecting: 5µl on Dionex RSCL (UHPLC) (3 technical replicates each)
- Column: BEH C18, 2.1x50; 1.7um
- 8 Minute total run time
- MS: compact QTOF
- Ionisation: ESI positive

Non-targeted & targeted Metabolomics

Both can be addressed using one ESI-TOF-MS data set

Metabolic profiling

Seamless data evaluation by MetaboScape

- Comprehensive feature extraction by "Find Molecular Features" algorithm
- RT alignment
- Bucketing
- Normalization Scaling

 Combining extracted FMF features resulted in buckets for further analysis in MetaboScape software in this example

	rtabolomics - Stable	Lines HoL	DIG/Leaf bissue															
- Open	Overview	h		Compour D	1 ist.	Pathway Mapping 🕹 Export											00	-
Prop	*	- Sam	ple Table 🛛 🖓 Pri	ocessing View			Bucket Sta	tistics 0	Box Plot -S B	ucket Correlation							Legend	
	ht		File Name	Include	Line		* [a 11]					21.21min 1	273.71200m/z	(an adverter)			Line	
0105	495 -	1	WT_02_BAB_0	1 🗹	WT		Correlated B	ockets	10	21.21 min : 11	89.16281m/z		T	HGL-DTG -	Fragment Aglycon		X m	
Statis	tics	• 2	WT_03_BC2_0	1 🗹	WT			0		C14H20	tr - tragment	n 0.5	00	C20H82O		1	0 5	
		- 3	WT_04_882_0	1		-	1.1				c 0.99	8. Åm	/z \$22,407 n	0.997			A 10"	
		4	WT_05_BC6_0	1 🗹	WT		Absolute co	relation C	utoff: 0.5		å m/s	208.142	1 0	m/z -180.063				
Annet	ation	• 5	WT_01_BC8_0	1 🗹	WT		E .			21.21min : 1099.676	530m/z = 0.998	23-20min	451.30451m/z Na:M-H2O+H0	<i>n</i> 1	21.22min	1658-32751/m/2		
		- 6	538_05_01_BB	1	RT					C58H98O19	∆ m/z 64	18.372 Lyciumos	de IV, Aglycone	Gk	1123			
		7	538_05_02_BB	3	RT							C26H42O	1	∆ m/z -3600	21.21.min : 41	5.28269m/z		
Patriway	/ mapping	8	538_05_03_BC	4 🗹	RT		Group & RT	(sec.):	<=6		0.03	99	0.999	10	C26H3804	in - magment		
		9	538_05_04_BA	4 🗹	RT	-	- A			21.20	min - 550 #8536m/r	L 100-100	m/z 832,403	6m/z -308232				
fr	port	10	544_09_01_BC	1 🗹	GT					C35H	62N2O3	21.21.0	in 1283 20790m	21.20m	in: 149.15207m/2 uside N - Example			
		11	544_09_02_88	6	GT							C59H0	08N2O26	C11H0	100000000000000000000000000000000000000	1		
			KAA NO NE BA	, 0	67		· · · · · · · · · · · · · · · · · · ·	.orreation	Mode									
s	ave	Buck	et Table															
															Search	VFilter	Nan	ne *
			Bucket	RT (min	Meas. m/z	Name	 Molecular For 	AQ	Include	WT_02_BA8_01	WT_03_BC2_01	WT_04_882_01	WT_05_BC6_01	WT_01_BC8_01	538_05_01_881	538_05_02_883	538_05_03_8C4	538_05_04_BA4.
		350	20.94min : 79	20.94	799.40678	Lyciumoside IV	C ₁₀ H ₆₄ O ₂₄		M	123964	113788	100553	128440	122376	53795	\$1506	29070	398
		311	21.21min : 41	21.21	415.28269	Lyciumoside IV - Fragment	CalHaO4	-	M	0	0	0	0	0	3563	2820	1927	23
		311	21.20min : 17	21.20	177.16259	Lyciumoside N - Fragment	CuHa		M	0	0	0	0	0	3235	2110	2173	274
		313	21.21min : 18	21.21	189.16281	Lyciumoside IV - Fragment	CuHa		M	0	0	0	0	0	3807	2849	2166	2)
		314	21.21min : 231	21.21	231.20975	Lyciumoside IV - Fragment	CUHM		M	0	0	0	0	0	7891	6069	5961	61
		315	21.20min:14	. 21.8	149.13207	Lyciumoside IV - Fragment	CoHa		8	0	0	0	0	0	58.8	4912	\$707	45
		316	21.21min : 32	21.21	325.11252	Lyciumoside N - Fragment	C ₁₀ H ₀₀ O ₁₁		×	0	0	0	0	0	10646	8925	7906	96
		31)	20.95min: 49	20.95	497.11443	Lyciumoside IV Fragment	C ₁₀ H ₂₄ O ₂₄	1.0	M	1757	1044	2092	0	0	0	0	0	
		318	20.52min : 49	20.5	497.11317	Lycumoside IV Fragment	CuHuOu		M	0	0	0	0	0	7891	7943	803	302
		513	20.90min : 27:	L. 2030	213.09582	Lyciumoside IV Fragment	CigHgOy		×	12010	10/53	6001	12/12	104/8	0	0	0	
		125	21.12min: 49	- 21.1	497.11340	Lyciumoside IV Fragment	CaHolOsi		×	1772	0	0	1091	1927	15057	16726	21098	209
		32	20.95min : 2/1	20.90	2/1.24148	Lyciumoside IV, Aglycone	CaPlas		×	12/818	134115	72625	140894	120907	210/3	22633	1/64/	1/8
		122	21.2000011455	22.25	451.30451	Lyclumoside IV, Aglycone_ Oc	Carleon		<u> </u>	0	0	0	0	0	38762	32242	22835	317
		323	20.34min : 450	20.94	431,30485	Lyciumoside IV, Aglycone _ Glc	Carte Os		8	20125	20503	11012	23875	20000	0	0	0	
		324	20.47min : 39	20.4	561 22002	sycumoside IV, Aglycone _ Glc	C H O		2	1502	0	2008	1355	1084	10		0	
		340	20.50 min : 500	2030	507 36107	Lyummuside M. Ashirone _ Gir	C H O	100	8	4318	4301	2398	52775	51020	121	6522	0	3
		3/2	20.05min : 39	20.90	415 30067	Luciumoride N Ashrone Pha	C-H-O	10	2	49473	43090	2/522	33275	31920	0902	6525	3409	20
		327	8.00min : 477	2. 8.90	472 34152	Monobulated N N utilization	CHANO		0	0	204/1	0	2029	24140	0	451	0	
		320	41.61min - 28	41.61	282 27835	N.Octaderenamide	Culture		8	21711	20853	18576	11380	18708	16714	2552	16005	73
		220	1.68min - 261	1 1.61	261 1 2821	N-raffacide traccine icomer 1	CHNO				41165	6042			0			
		330	2 10min - 251	1 216	251 13840	N-calleoulou trancine licomer 2	CHAO		0	1638	37770	1658		0	0	2230	0	
		111	12.08min : 484	12.00	484 24212	N N -Caffeord fenderstermidi	CHINO		2	0	7776	1153	0	0	0	572	0	
		333	7,80min : 470	2 7.85	470.22674	N.NDi-caffeoultnermidine Ito.	Culturio		8	2623	152330	13072	1501	1902	3646	6397	3302	17
		114	8.87min - 470	2 8.83	470 22684	N N Discaffeedmermidine ho.	C-H-NO		2	1023	156728	6601		1902	1054	1077	1222	
		335	9.07min - \$70	2. 9.03	470.22647	N N -Di-caffendmermidine ko.	C-H-NO	1	2	0	123472	5350		652		2657	1124	
		136	12.86min : 498	12.84	498,25853	N.N -Di-ferulovi-spermidine ho.	C-H-NO		8	11272	9446	10218	8631	7119	10750	9524	13514	147
		111	14.18min : 49	14.10	498 25833	N N .Di-fendest-spermidine ho	CHING		2	2566	4111	3472	2266	2466	2910	0	3078	124
			13.60	13.65	400 150 34	N. N. D. Lands & second franks	CHAO	1.00	2	4314		0	2236	2100	1562	4174	0	160

Characteristics of strong coffee...

Statistics can be done in Bruker MetaboScape software,...

Dpen	Overview	Statistics	0	Compound	See M	thway 🕹 Export						
Preter	• S	ample Table	Oi Process	sing View			-	~ Bucket Stati	stics 0 é	Box Plot	-S Bucket Cor	relation
h		File	Name	Include	Line			C			_	_
Groups	• • • • • • • • • • • • • • • • • • •	1 WT_02	BA8_01		WT			Correlated Bu	ckets	10		21.21m
Statistics	•	2 WT_03	BC2_01_	2	WT	•			<u> </u>	1	-	C14H20
		3 WT_04	882_01	2	WT				· · · ·			
		4 WT_05	BC6_01	8	WT	•		Absolute com	elation Co	toff: 0.5		
Annotation	•	5 WT_01	BC8_01		WT		1				. 21	.21min : 105
		6 538_05	01_881	8	RT						C	581-98019
Dathur Mar		7 538_05	02_883		RT	•						
Pathway map	ping	8 538_05	03_BC4		RT			Group & RT (s	ec.):	<=0		
		9 538_05	04_BA4		RT	•	U.	- 0-				0
Export		10 544_09	01_BC1		GT							
		11 544_09	02_886		GT			0.0.446				1
		17 544 00	A2 8A7	2	67		•	Bucket Co	meation	Mode		
Save	B	ucket Table										
		Bucket		RT (min)	Meas. m/z	Name		Molecular For	AQ	Include		WT_02_BA8
		310 20.94m	in:799	20.94	799.40678	Lyciumoside IV		CasHadOat		N		12
		311 21.21#	in:415	21.21	415.28269	Lyciumoside N - Fragment		CatHarOs				
		312 21.20m	in:177	21.20	177.16259	Lyciumoside N - Fragment		CuHe				
		113 21.21m	in:189	21.21	189,16281	Lyciumoside IV - Fragment		Cullin		R		

...or optionally you could also export the bucketed data from MetaboScape to other open source statistical tools like **MetaboAnalyst**

Xia, J., Sinelnikov, I., Han, B., and Wishart, D.S. (2015) Nucl. Acids Res. (DOI: 10.1093/nar/gkv380).

... or commercial software like Simca-P

SmartFormula3D delivers a unique molecular formula for Compound X: $C_6H_6NO_2$

April 12, 2016

http://msbi.ipb-halle.de/MetFrag/

Wolf et al. BMC Bioinformatics 2010, 11:148 http://www.biomedcentral.com/1471-2105/11/148

METHODOLOGY ARTICLE

In silico fragmentation for computer assisted identification of metabolite mass spectra

Sebastian Wolf^{1*}, Stephan Schmidt¹, Matthias Müller-Hannemann², Steffen Neumann¹

Open Access

Use KEGG, PubChem, ChemSpider or Upload likely structure for in silico fragmentation in MetFrag: <u>http://msbi.ipb-halle.de/MetFrag/</u>

KER

B

RUI

In silico fragments are matched against measured fragment ions <u>http://msbi.ipb-halle.de/MetFrag/</u>

April 12, 2016

A direct link from SmartFormula3D to MetFrag indicates nicotinic acid as likely structure for Compound X

SumFormula	m/z calc err[n	nDa] err[ppm]	mSigma				MetFrag					
C ₆ H ₆ NO ₂	124.0393	-0.1 -0.4	3.8		Me	• Frag	In silico fragmentati	on for compu	ter assisted identification of	f metabolite mass s	spectra	
<i>Nicoti</i> likely fragm source	Copy Formula Copy Entire Resul Copy to Fragmen Send Formula to Send Matched Pe	t t <u>S</u> martFormula List CompoundCrawler taks To MetFrag d by in-si in the ope g tool	s lico en	C III	NetFrag abase Settin tabase: utral exact r lecular form ly biologica pit # of struc- ase ID's: Search upst Frag Setting sde: arge: :abs (e.g. 0.0 ppm (e.g. 1	MzAnnotate View Mass: M	About / News KEGG PubChem ChemSp 123.0320 Search PPM: C6HSNO2 I00 100 (M+H) [M+H] [M+H] [M] ints! 0.001 0.1	ider () Local S	DF Parent ion Peaks:	S1.0386 797 78.0338 4546 80.0495 5345 96.0444 856 106.0287 742 122.0237 148	el T	Calculate
					Log							
				K		> >> >>			D	ownload complete tabl	e: <u>Genera</u>	ate output files
MetFra	aa:				Score =	# Explained Peaks	Trivial Name	Exact Mass	Structure	Data	base ID	Actions
http:// Wolf, S BMC B	/msbi.ipb-h 5. et al.: ioinformati	alle.de/Me cs 2010, 1	tFrag/ 1:148		1.0	3	 Nicotinate Nicotinic scid Niacin 3-Pyridinecarboxylic scid 	C ₆ H₅N₁O₂ 123.032	N O	0 <u>coor</u>	53	Fragments Download

Nicotinic acid ID verified by FragmentExplorer & proven by comparison to BRUKER authentic standard

Fragments assigned using FragmentExplorer in Bruker DataAnalysis software

Compound ID fits to chemical knowledge: Nicotinic acid is a known degradation product from Trigonelline contibuting to a roasty coffee aroma

Boettler U. et al 2011, The Journal of Nutritional Biochemistry Vol. 22 (5), p.426-440 Non-targeted & targeted Metabolomics

Both can be addressed using one ESI-TOF-MS data set

Non-targeted Metabolomics:

 "Think" extract all Features first

Targeted Metabolomics:

 "Think" hrEICs – if you know what you are looking for

Metabolic Pathway driven targeted Metabolomics

using same high resolution full scan QTOF data

Note: restrictions apply to use KEGG for commercial purposes for details see: http://www.kegg.jp/kegg/legal.html

Workflow:

- 1) Non-targeted QTOF Metabolomics -> one Biomarker identified
- 2) Hypothesis: there are other biochemically related metabolites changed in the samples as well
 - ->Query known target in Metabolic Pathway Database
- 3) selected Pathway
- 4) retrieve name and formula of all metabolites
- 5) Targeted screening for these compounds by hrEICs in QTOF data
- 6) Optional statistical analysis

Metabolic **Pathway driven targeted Metabolomics** using same high resolution full scan QTOF data

4) Target list of analytes derived from Metabolic Pathway automatically created:

Analytes in Group:						
Analyte	Formula	Mass		*		
Deamino-NAD+	C21H27N6O15P2	665.1010		-		
Fumarate	C4H4O4	116.0110				
Glycerone phosphate	C3H7O6P	169.9980				
Iminoaspartate	C4H5NO4	131.0219				
L-Aspartate	C4H7NO4	133.0375				
Maleamate	C4H5NO3	115.0269				
Maleic acid	C4H4O4	116.0110		Ξ		
Methylitaconate	C6H8O4	144.0423				
N-formylmaleamic acid	C5H5NO4	143.0219	(
N-Methylnicotinate	C7H7N02	137.0477	∧ Chromatogram Vi	l in		p# # U] ~ q q ~ U w
N1-Methyl-2-pyridone-5-carboxam	C7H8N2O2	152.0586				
N1-Methyl-4-pyridone-5-carboxam	C7H8N2O2	152.0586	15 -			
5) create "h screen for ta compound in high resoluti -> analog to	rEIC" to arget n full scan on data		And 0.5 -			
TargetScree	ning		0.0	0.5 N-M	1 1.5 thylnicotinate, 138.0550±0.0	2 2.5 3 [r 2005, C 7 H 7 N 1 O 2, 0.4min

Workflow:

- 1) Non-targeted QTOF Metabolomics -> one Biomarker identified
- Hypothesis: there are other biochemically related metabolites changed in the samples as well

->Query known target in Metabolic Pathway Database

- 3) selected Pathway
- 4) retrieve name and formula of all metabolites
- 5) Targeted screening for these compounds by hrEICs in QTOF data
- 6) Optional statistical analysis

Metabolic **Pathway driven targeted Metabolomics** using same high resolution full scan QTOF data

5) Targeted screening for compounds can be applied to entire sample batch

Metabolic Pathway driven targeted Metabolomics

using same high resolution full scan QTOF data

Workflow:

- 1) Non-targeted QTOF Metabolomics -> one Biomarker identified
- Hypothesis: there are other biochemically related metabolites changed in the samples as well
 - ->Query known target in Metabolic Pathway Database
- 3) selected Pathway
- retrieve name and formula of all metabolites
- 5) Targeted screening for these compounds by hrEICs in QTOF data
- 6) Optional statistical analysis

Pathway driven targeted Metabolomics data evaluated in ProfileAnalysis: PCA reveals similar separation according to Coffee Intensity like untargeted approach

www.bruker.com

For research use only. Not for use in diagnostic procedures. Copyright © 2010 Bruker Daltonics. All rights reserved.