

ENDOGENOUS METABOLIC PROFILING AS A FUNDAMENT FOR PERSONALIZED THERANOSTICS

Torbjörn Lundstedt

Professor in Chemometrics C.S.O. AcureOmics AB

Thessaloniki, Greece, 19th of May, 2016

About AcureOmics AB

- Founded September 2007, Umeå, Sweden
- **SME** participating in several EU funded projects/collaborations
- Core expertise
 Chemometrics
 - Philosophy
 - Applications
 - Metabolomics
 - Planning experiments
 - Metabolic profiling Metabolomics platform
 - Multivariate data analysis
 - Workshops/Courses in "omics" related to biological systems

METABOLOMICS

Detailed studies of the "metabolome"

Chemometrics

Acure

omics

extract information when studying complex systems

Define the aim

- What do we want?
- What is known already / what more knowledge is needed?

Selection of objects (samples, time points, experiments)

- Design of Experiments (DOE)
- Multivariate design (MVD)

Sample preparation and characterisation

- Experimental protocol (*e.g.* GCMS, Microarray)
- Data processing (*e.g.* normalisation)

Evaluation/Validation of collected data

- Exploratory analysis
- Interpretation & Visualization

The Handbook of Metabonomics and Metabolomics

John C. Lindon • Jeremy K. Nicholson • Elaine Holmes

ACUTE Mass spectrometry based metabolomics platform

One of Europe's best equipped laboratories

Chromatogram generation Metabolite identification Modelling Biochemistry Pathways analysis

RA: Comparison of the human case and animal models

- Great overlap of metabolites between humans and animals
 - Different metabolites show overlap in different animal models
 - Allows for identification of relevant animal models
 - Selection of model system for treatment studies

BM	Human Rheumatoid	Mouse Collagen	Rat Adjuvant	Mouse Collagen	
DIVI	Arthritis	Induced Arthritis	Induced Arthritis	Induced Arthritis	
Aspartate	\checkmark	na	na	↑	
myo-insoitol	1	?	?	na	
Alpha-tocopherol	1	\rightarrow	\rightarrow	na	
Phosphoric acid	1	0/↓	→	1	
Proline	\checkmark	na	na	\checkmark	
Ornithine	\checkmark	\rightarrow	\rightarrow	\checkmark	
Tyrosine	\checkmark	→	\rightarrow	\downarrow	
Glycine ↓		→	↑	↑	
Valine	na	→	→	\checkmark	
Glyceric acid	\checkmark	1	↑	1	
Isoleucine	\checkmark	0/↓	\rightarrow	\checkmark	
Phenylalanine	1	na	na	\checkmark	
Asparagine	\checkmark	→	→	↑	
Lysine	\checkmark	\rightarrow	?	↑	
Serine	\checkmark	→	→	1	
Pyroglutamic acid	\checkmark	?	→	na	
Cysteine	na	\rightarrow	→	\checkmark	
Cholesterol	1	↑	√/?	\checkmark	
Tryptophan	\checkmark	→	\rightarrow	\checkmark	
Urea	\checkmark	√/?	\rightarrow	\checkmark	
Glucose	↑	^/?	1	\checkmark	
Malic Acid	\checkmark	\rightarrow	→	\checkmark	
Hexadecanoic acid	na	→	→	\checkmark	
Linoleic acid	↑	\checkmark	0/↑	\checkmark	
Oleic acid	1	↓	\checkmark	1	
Creatinine	na	•	1	1	
Sterol	\checkmark	na	na	\checkmark	
Glycerol-3-phosphate	\checkmark	na	na	4	

RA: Comparison of therapies in rat AIA model

- Metabolites levels are affected by administered therapeutics
 - New drug (X) restore levels in more metabolites compared to MTX*
 - Useful in development of novel drugs
 - Tool in clinical studies to verify therapeutic effect in clinical studies
 - Concomitant developmen of novel drug and diagnostic test, theranostics?

	BM Vehicle	MITY	401010	х	Х	х	
S		venicie	IVITX	AP1010	1mg	3mg	10mg
	Phosphoric acid	0/个	→	1	\checkmark	0/↓	\checkmark
	Ornithine	0/个/?	0/?	1	0	1	1
	Tyrosine	\checkmark	0/个	1	0/↑	0/↓	1
	Valine	0	↑	1	4	1	1
	Glyceric acid	1	↑	\checkmark	1	↑	1
	Isoleucine	0	0/↓	1	\checkmark	0/↓	1
	Phenylalanine	0/↓	1	1	0/↓	1	1
	Asparagine	1	0/↑	1	0/↓	1	0/个
	Lysine	1	0/?	?	1	1	1
	Serine	0/个	1	\checkmark	0/↓	1	1
	Pyroglutamic acid	0	\checkmark	0/个/?	1	1	\checkmark
	Cysteine	\checkmark	\checkmark	1	\checkmark	\checkmark	\checkmark
it	Cholesterol	\checkmark	\checkmark	1	\checkmark	0/个	0/个
	Tryptophan	\checkmark	\checkmark	1	\checkmark	\checkmark	\checkmark
	Malic Acid	1	1	1	0/个	1	1
	Hexadecanoic acid	\checkmark	0/↓	\checkmark	\checkmark	\checkmark	\checkmark
	Linoleic acid	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Oleic acid	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Creatinine	1	1	1	1	1	1

Introduction

- MODY5 Maturity onset diabetes of the young
- Heterogeneous mutants (HNF1b+/--)
- Plasma samples day 1, 3 and 5
- Urine and Feces collected each day.
- Compartments
 - Gut
 - Kidney
 - Liver
 - Muscle
 - Pancreas
- Divided into Group 1 and 2

PCA

- Principal component analysis (PCA)
- Model of the greatest separation between observations
- PCA Score plot, five different compartments, group 1 samples

PLS

- Partial least squares projection to latent structures (PLS)
- Model of maximum covariation between X and Y
- Quantitative relationship between X and Y
- PLS Score plot five different compartments, group 1 samples

Hierarchical modelling

- Collecting PCA Score vectors
- PLS with Plasma Day1, 3 and 5 as Y vectors

Hierarchical modelling

Liver and Kidney affect the levels of Plasma metabolites

Results

- Liver consumes plasma aromatic amino acids, TCA-cycle metabolites and Cholesterol
- Liver release Xanthine metabolism metabolites and branched amino acids to the plasma.

Kidney consumes plasma fatty acids, amino acids and carbohydrates
 Kidney releases Cholesterol and AMP to the plasma

Future work

- Metabolomics on Urine samples
- Compare Metabolomics and Proteomics

Acknowledgments

Special thanks to: Dr. Urban Liebel KIT Frida Troell KIT Prof. Johan Trygg Umeå Dr. Kate Bennett AcureOmics BOLD FP7 400000Euro HUMAN FP7 12000000 Euro Dr. Katrin Lundstedt-Enkel AcureOmics BIOMARGIN FP7 6000000 Euro BATTCURE HORIZON2020 6000000 Euro

Thank you for listening!

