Metabolomics Analysis of *Phaseolus vulgaris L.* Affect on a Breast Cancer Rat Model

Compound Identification Using an Accurate Mass Retention Time Library Steven Fischer Senior Application Scientist LC/MS Marketing Agilent Technologies, Santa Clara, CA

Topics

Compound identification challenges

Compound identification using AMRT

- Accurate mass matching
- Retention time matching
- Isotope matching
- LC/MS metabolomics example
 - Phaseolus vulgaris L. Affect on a Breast Cancer Rat Model

Metabolomics Compound Identification Challenges

Compounds can be classified as:

- 1. Known metabolite
 - Make it easy to identify
- 2. Known chemical but not a known metabolite
 - Make it possible to identify using MS/MS
- 3. Unknown chemical and unknown metabolite
 - Major project to identify

Metabolite Identification Schemes

- 1. Search a mass spectral library
 - Agilent Fiehn GC/MS Metabolomics Library
 - Metabolomics specific LC/MS/MS Library
- 2. Search a database, buy the standard and re-chromatograph
 - METLIN AMRT Database
- 3. Interpret an MS/MS spectra
 - MS/MS pattern matching software
- 4. Purify the compound and analyze by NMR with mass spectral data support
 - Mass directed purification systems

Compound Identification Using an Accurate Mass Retention Time Library

Analysis Of Metabolites Using METLIN With Retention Time And Isotope Pattern Scoring

Increase specificity of identification

- •Search on mono-isotopic accurate mass
- •Require retention time
- •Calculate empirical formula using full isotope pattern
- Generate empirical formula for unmatched data
- •Add found but unknown compound to database for future tracking
 - retention time and proposed formula

Molecular Formula and METLIN Personal Metabolite Database Matching Applied to the Identification of Compounds Generated by LC/TOF-MS, T. Sana et al, *Journal of Biomolecular Techniques* 1 9:258–266 2008

METLIN Personal Database Overview

Metabolite-specific database for metabolomics research

- Database installed on a PC
- Contains ~22000 compounds
- Manual and batch searches
 - Query based on monoisotopic mass
- Customizable
 - Add compounds
 - Assign chromatographic retention times to metabolites
 - Create subset databases
- Works with other Agilent software

Calculating a Molecular Formula (MFG) With Database Searching

Dihydrocortisol example

- Database search
 - Uses only mono-isotopic mass; loses isotope information
 - Only compounds in the database can be matched; database selection creates specificity based on biology
- Molecular formula calculation (MFG)
 - Uses mass values of all isotopes, including adducts
 - Support database match; if no retention time information present
 - Provides useful information; even if no database match

-	n/z	Ion	Formula	Abundance						
	365.23227	[M+H]-	C16H34740.4P	21663.7						
	Eest	Fermin(v)	Ion Form An	Size 7	Cress Score	Mes	Dek Mess	Dillerence (com)	Abs Cill (cpm)	DE
	× I	C*S133N404P	C1910444047	100		364 225	364.22334	-2.09	2.00	
	E	L16H29N8P	CTEHSONEP	\$6.7		364 225	364.225.38	0./8	3,73	
		C: #H34N60P2	C14H38H60F2	\$5.5		361 225	364,22633	5.32	5.32	
I		C21-0225	C21H3305	76.45		364 225	364.22497	-0.06	2.05	
	lactope	Mun57	Celc Aband?	m/t	Celc nvz	Diference kpml				
н	1	100	100	365.25227	365.2328	1.05				
	2	17.05	33.38	365.23479	365.23566	2.39				
	3	2.83	3.62	367 2396	367.23834	-3.42				_
	Deat	Femula (V)	lon Form.la	Scare 5	Diesa Score	Moss	Calc Mass	Dillerance (ppm)	Abs Dif (com)	DEI
		L" 4HJ2NBUSS	01445376036	21.62		364 225	364.225.56	1.82	1.82	
		C17H2BH6C3	C17H29N603	61.32		361 225	364.22229	-7.43	7.43	
		C17H38N2P25	C17H39N2P25	56.77		364 225	364.22309	-5.22	5.22	
1		C22H28N40	C22H29N43	55.79		364 225	364.22631	36'	3.61	
							the second se			

Erythrocyte Metabolites Extracted At Different pH And Ionization At Different Modes

- No single ionization mode detects all analytes
 - 1. ESI 67% vs. APCI 25%
 - Common to both 7.3%
 - 2. Pos mode 74% vs. Neg mode 22%
 - Common to both 3.9%

Need method for ESI (+/-) and APCI (+/-)

A sample extraction and chromatographic strategy for increasing LC/MS detection coverage of the erythrocyte metabolome, T.R. Sana et al., *J. Chromatography* B871 (2008) 314-321

Chromatography method must be compatible with ESI & APCI and positive & negative ionization

AMRT Analytical Methodolgy

•Single reverse phase separation method

- Water, methanol and acetic acid
- Reverse phase column
 - 2.1 x 50 mm, 1.8 µm Zorbax SB-Aq
 - 2.1 x 30 mm, 3.5 µm Zorbax SB-C8
- Flow rate 0.6 ml/min
- Simple linear gradient
 - 2% methanol to 98% methanol in 13 minutes
 - 6 minute hold at 98% methanol
- Cycle time 24 minutes
- Compatible with ESI / APCI and positive / negative ionization modes

Vitamin B2 Standard: $C_{17}H_{20}N_4O_6$ [M+H] = 377.1456, [M-H] =375.1310

LC/MS Internal Standards

2-(methylthio)benzothiazole

1-naphthylamine

9-anthracene carboxylic acid

2-(methylthio)benzothiazole

- APCI only positive ion only
- Recovery has significant dependence on pH and salt

1-naphthylamine

- APCI and ESI positive ion only
- Good solubility, especially at low pH

9-anthracene carboxylic acid

- APCI and ESI positive and negative ion mode
- Good solubility, especially at high pH

Using Accurate Mass, Retention Time Database Searching With Molecular Formula (MFG)

Hu	nan l	Jrine Sam	ple 11									
	Or	en	Sav	re 🤅	Save As	Export	Close					
Ba	atch	Result	Batch S	Summary								
		1	070 Fea	atures					Structu	ure Infomation	Note	əs
		Mass	RT 🔺	# DB Hits	# MFG Candid.	Feature ID	Abundance	log2(,4	Structure	MOL Text	Endo	genous Metabolite
	48	5 219.1100	4.019	0	2	162	273556				Geigy	vol. 3 p. 103
	48	6 99.0689	4.092	0		4	9118307			Ŷ		
	• 48	7 152.0333	4.146	1		196	213279					
	48	8 168.0536	4.149	0		712	24296			NH	-1	
	48	9 111.0684	4.196	0		950	12353				»	
	49	0 174.1001	4.196	0		729	22760				-NH	
	49	1 216.1101	4.198	0	2	246	159829		0\$	r nh		
	49	2 99.0686	4.261	0	1	34	1788792	~				
L	<							>	-			
		Ма	ss = 15	2.0333, Tii	me = 4.146							
		Best Obs.	Mass	Obs. RT	Name Form	ula 🛛 🛆 Mass(ppm) ΔRT	MFG Score	CAS	METLIN KEGG H	IMP	
۲	1		152.0334	0.000	Xanthine C5H4	N402	0.4 4.1	30 100.0	0 <u>69-89-6</u>	82 <u>C00385</u>		
	2		152.0334	0.000	C5H1	2052	-2.7	91.1	7			
	3		152.0334	0.000	C4H8	06	-8.4	59.	3			
*	4											

Results are returned prioritized by;

- AMRT match and MFG
- AMRT only
- Database match and MFG
- Database match
- MFG

Reverse Phase, Accurate Mass, Retention Time (AMRT) Metabolite Database

Radical ion type	Edit actions	Molecule	: Structure MOL Text	0	
Radical ion type Neutral	E dit actions	٩		0	
Neutral					
	Add New				
O Anion	Addition			NH OH	
O Cation	Save As New				
	Update Selected			•	
	Delate Colorial				
	Delete Selected	Notes	Antidepressant, MAO inhibito	n	A
			Metabolite of Tranylcypromin	ne and Benzyl benzoate	
			Dollery, Colin Therapeutic Dr	rugs, 2nd Ed. 1999 p. B34, T154	2
		Delete Selected	Delete Selected Notes	Delete Selected Notes: Antidepressant, MAD inhibit Metabolite of Tranylopromin Dollery, Colin Therapeutic Dr	Delete Selected Notes: Antidepressant, MAD inhibitor Metabolite of Tranylopyromine and Benzyl benzoate Dollery, Colin Therapeutic Drugs, 2nd Ed. 1999 p. B34, T154.

Retention times were added to the database by running standards

- Database is separation specific; retention times change if separation is changed
- Compounds need to be retained (k'>2) in order for retention time to add specificity
- Compounds of same mass ranked differently if retention time information present
- RP-AMRT currently contains 363 database entries with retention time

Metabolomics Analysis of *Phaseolus vulgaris L.* Affect on a Breast Cancer Rat Model

Steven Fischer LC/MS Marketing Agilent Technologies, Santa Clara, CA

Henry J. Thompson Meghan M. Caulum Cancer Prevention Laboratory Colorado State University

Dry Bean / Rat Tumor Study

Breast cancer rat model responds to different dry beans

- White kidney bean is most effective
- Navy bean is intermediately effective
- Red bean is partially effective
- Rat chow has no effect

Are there observable chemical differences in beans?

Can the differences be seen in plasma, gland or tumor?

Treatment	Sample Number	incidence (%)	average	Tumor burden
			tumors per	g/rat
Control	30	93.3	3.2	0.48
Navy Bean	30	70.0	1.9	0.34
White Kidney Bean	30	66.7	1.0	0.05

Study Design

Diet test

- 10 lots produced of each
 - House blend rat chow AIN-93G
 - 60 % white kidney to chow blend
 - 60 % navy to chow blend
 - 60 % red to chow blend

Animal - Diet test

- 10 animals feed diet of
 - House blend rat chow AIN-93G
 - 60 % white kidney added to chow
 - 60 % navy added to chow
 - 60 % red added to chow

Sample Processing Protocol

Sample extraction

- Diet 50 mg, Plasma 100 ul, tissue 100 mg
- water / methanol / chloroform
 - pH 2 and pH 9

Extract preparation

- Speed-Vac to dryness
- Protein precipitate with 75% ACN
- Speed-Vac to dryness
- Reconstitute with 50 ul methanol, vortex then 50 ul water, vortex
- Blend pH 2 and pH 9 extracts
- Inject 5 ul into LC/MS system

Data Analysis Workflow: Bean, Mammary Gland, Plasma and Tumor

Initial Analysis Of Bean Supplemented Diets Data

PCA of Bean Diet Data

Condition Tree of Bean Diet Data

Identification Results Of Bean Diet Samples LC/MS; ESI-Positive Ion

	Control		Wh	nite	Na	vy	Red	
	Number	Percent	Number	Percent	Number	Percent	Number	Percent
Total								
Features	692	100.0%	1386	100.0%	1639	100.0%	2290	100.0%
DB+RT+MFG	7	1.0%	10	0.7%	10	0.6%	14	0.6%
DB+RT	0	0.0%	2	0.1%	1	0.1%	5	0.2%
DB+MFG	89	12.9%	322	23.2%	340	20.7%	481	21.0%
DB	31	4.5%	69	5.0%	90	5.5%	144	6.3%
MFG	444	64.2%	655	47.3%	716	43.7%	1025	44.8%
No match	121	17.5%	328	23.7%	482	29.4%	621	27.1%
	692		1386		1639		2290	

Analysis Of Rat Mammary Gland After Four Different Bean Diets

PCA of Mammary Gland Data

Condition Tree of Mammary Gland Data

Identification Results Of Mammary-Bean Diet Samples, LC/MS; ESI-Positive Ion

	Control		Wh	White		Navy		Red	
	Number	Percent	Number	Percent	Number	Percent	Number	Percent	
Total									
Features	1218	100.0%	1186	100.0%	1182	100.0%	1141	100.0%	
DB+RT+MFG	10	0.8%	10	0.8%	10	0.8%	8	0.7%	
DB+RT	0	0.0%	1	0.1%	1	0.1%	1	0.1%	
DB+MFG	287	23.6%	284	23.9%	319	27.0%	272	23.8%	
DB	18	1.5%	8	0.7%	8	0.7%	27	2.4%	
MFG	743	61.0%	707	59.6%	688	58.2%	693	60.7%	
No match	160	13.1%	176	14.8%	156	13.2%	140	12.3%	
	1218		1186		1182		1141		

Bean Metabolites Found In Mammary Gland Tissue

White Bean

- Present in both 0
- Unique to tissue 27
- Unique to bean 280

Navy Bean

- Present in both 7
- Unique to tissue 289
- Unique to bean 739

Red Bean

- Present in both 3
- Unique to tissue 24
- Unique to bean 743

AMRT Search Results For Common Metabolites

White Bean – 0

Navy Bean – 7

- DB + RT + MFG 1 (niacinamide)
- DB + MFG 2
- MFG 4

Red Bean – 3

- DB + RT + MFG 0
- DB + MFG 2
- MFG 1

Bean-Rat Model Observations With Regard to Identification

- 1 in 4 features were found in the METLIN database
 - A RT database of 363 compounds is too small (~4% of DB matches)
- 4 in 7 features had only an empirical formula calculated
- 1 in 7 features were complete unknowns

