

Standardizing

Gas Chromatography-Mass Spectrometry

Metabolomics

Maria I. Klapa

Metabolic Engineering and Systems Biology Laboratory

Institute of Chemical Engineering and High Temperature Chemical Processes, Foundation for Research and Technology-Hellas (FORTH),

Patras, GREECE

Metabolomic Profiling: a multi-step procedure

Internal Standard Normalization

CEHT

Sonly biases that change RF to the same extent for all metabolites (Type A) might be present

e.g. variation in the injected volumes, variation in drying, variation in replicate division, &

Equipment's operating conditions remain <u>constant</u> among runs

ratio _{between 2 states} (Metabolite's j Concentration) = ratio (RPA_j)

From Original Metabolite to Derivative Peak Area

- > concentration of the original metabolite
- > concentration of a derivative of the original metabolite
- Measured peak area of the derivative's marker ion(s)

ratio between 2 states (Mj Concentration) ? ratio(RPA_{deriv. I of Mj})

Type B Biases

- Incomplete derivatization
- Multiple Derivatives for some Metabolites
- Potential Change in Equipment's Conditions between Runs

Need for a NEW Data Normalization, Correction and Validation Strategy

not jeopardizing the high-throughput nature of metabolomic analysis

H. Kanani and M.I. Klapa #. 2007. Data Correction Strategy for Metabolomics Analysis using Gas Chromatography-Mass Spectrometry, Metabolic Engineering Vol.9:39-51

TMS and MeOX Derivatization

Metabolite Category 1

M + MSTFA
$$\xrightarrow{k}$$
 MD

$$W_{MD} = \frac{RF_{I}^{IS}}{RF_{j}^{MD}}$$

Published Metabolomic Analysis based on Metabolomic Data Acquired at Different Equipment conditions

Glucose — Fructose

Raw Data from Standard Amino Acid Mixture

Peak Area Variation with derivatization time among replicates of the same sample 15-100%

 $RPA_{t_1}^{MD_1}$: relative (with respect to the peak area of the internal standard) peak area corresponding to the i-th derivative of M metabolite at derivatization time t_i

 U.S. Patent Application No. 11/362,717
Best University of Maryland Invention of the Year 2005 in Information Sciences
H. Kanani and M.I. Klapa *. 2007. Data Correction Strategy for Metabolomics Analysis using Gas Chromatography-Mass Spectrometry, Metabolic Engineering Vol.9:39-51

Normalized Data from Standard Amino Acid Mixture

Peak Area Variation with derivatization time among replicates of the same sample dropped from 15-100% to 2-8%

Kanani HH, Chrysanthopoulos P, Klapa MI. <u>2008</u>. Standardizing GC-MS Metabolomics. J. Chromatogr. B Analyt Technol Biomed Life Sci. 871: 191-201

Matrix Effects Limit the Accuracy of the Measurements even in the presence of an automated derivatization scheme

Kanani HH, Chrysanthopoulos P, Klapa MI. <u>2008</u>. Standardizing GC-MS Metabolomics. J. Chromatogr. B Analyt Technol Biomed Life Sci. 871: 191-201

Identification of Unknown Peaks

	acid (M)	Derivative 1		Derivative 2		Derivative 3	
		MD ₁	w ₁	MD ₂	w ₂	MD ₃	w ₃
1	Alanine*	Alanine N O	1.025	Alanine N N O	0.774		
2	Arginine	Ornithine N N N O	1.10	Ornithine N N N O ²	0.48	Ornithine N N N N O	n/d
3	Asparagine	Asparagine N N O	0.726	Asparagine N N N O	1.904	Asparagine N N N N O ^{2,3} (putative)	1.59
4	Aspartate*	Aspartate O O ^{2,3}	3.824	Aspartate NOO	0.224		
5	Cysteine	Cysteine N O ²	n/d	Cysteine NS O	12.67	Cysteine N N O	0.37
6	Glutamate	Glutamate NOO	1.014	Pyroglutamate NO ¹	0.988		
7	Glutamine	Glutamine N N O	0.667	Glutamine N N N O	10.3	Pyroglutamine NNO ^{1,2,3} (putative)	9.00
8	Glycine*	Glycine N O	9.397	Glycine N N O	0.773		
9	Histidine	Histidine O ² (putative)	n/d	Histidine NO	n/d	Histidine N N O	1.00
10	iso-Leucine*	iso-Leucine O	2.55	iso-Leucine N O	0.92	iso-Leucine N N O ²	n/d
11	Leucine	Leucine O	n/d	Lecine N O	1.000	Leucine N N O ²	n/d
12	Lysine*	Lysine N N O	n/d	Lysine N N N O	1.005	Lysine NNNNO ²	2.12
13	Methionine*	Methionine N O	1.42	Methinonine N N O ²	0.369		
14	Phenylalanine	Phenylalanine O	1.30	Phenylalanine NO	0.48		
15	Serine	Serine O O	2.97	Serine NOO	0.299	Serine NNOO ²	7.87
16	Threonine	Threonine O O	3.30	Threonine NOO	0.321	Threonine NNOO ²	33.5
17	Tryptophan	Tryptophan O ² (putative)	n/d	Tryptophan N O	1.0	Tryptophan N N O	n/d
18	Tyrosine	Tyrosine O ² (putative)	1.18	Tyrosine O O	0.94	Tyrosine N O O	0.26
19	Valine*	Valine O	1.638	Valine N O	0.842	Valine N N O ^{2,3}	n/d
20	Allantoin	Allantoin N N N	25.3	Allantoin N N N N	0.530	Allantoin N N N N N	2.12
21	Beta-Alanine	B-Alanine O	8.88	B- Alanine N O	n/d	b-Alanine N N O	0.80
22	Gaba	Gaba N O	n/d	Gaba N N O	1.0		
23	Dopamine	Dopamine NOO	4.16	Dopamine N N O O	0.73		
24	Homoserine	Homoserine O O	6.51	Homoserine NOO	0.231	Homoserine N N C	eriva
25	Ornithine	Ornithine NNNO	1.10	Ornithine N N N O ²	0.48	Ornithine N N N N	reate

n/d: Not detected consistently in all the samples

Derivatives not present in major public databases

Derivatives formed from chemical transformations

S in public databases

Conclusions

We developed a GC-MS metabolomic data validation, normalization and correction strategy that does NOT jeopardize the high-throughput nature of the analysis

The method is easy to implement and increases the accuracy of measurements by an order of magnitude for some metabolites (NH₂ containing compounds)

In light of the importance of metabolomics research, this method is expected to provide a valuable tool for the acquisition of accurate metabolomic data

Objective

To analyze stress-induced molecular interaction networks in the context of plant primary metabolism during the <u>first (30) hours</u> of the stress treatment under a variety of individual or combined perturbations using integrated time-series transcriptomic & metabolomic analyses

Model System: Arabidopsis thaliana Whole Plant Liquid Cultures Well-controlled growth environment

10 Exp * 20 samples * 2 Injections * 550 Peaks = 220,000 Total Measurements

(8 Exp * 20 samples) Trizol extractions \rightarrow 160 mRNA amplifications \rightarrow 640 cDNA syntheses \rightarrow 320 Dye Injections \rightarrow 320 Micro-array hybridizations (flip-dye)

GC-MS Metabolomic Data Correction Methodology Paired-SAM analysis (TIGR MeV v.3.1) **Relative Peak Areas** -3.0 0.0 3.0 delta = 1.2, FDR (median)= 0%Without Data Correction **Relative Peak Areas** Unknown 022 -3.0 0.0 3.0 Unknown 013 With Data Correction Unknown 073 Unknown 381 Unknown 195 Unknown 391 Unknown 371 Unknown 083 Unknown 022 Unknown 368 Unknown 073 Unknown 024 Unknown 013 Unknown 116 Unknown 195 Unknown 387 Unknown 083 Unknown 040 Unknown 024 Unknown 044 Unknown 116 Unknown 048 Unknown 040 Unknown 376 Unknown 044 Unknown 074 Unknown 048 Unknown 161 Unknown 074 4-Hydroxybutanoate Unknown 345 Unknown 345 3.4-Dihvdroxvbutyrate 3,4-Dihydroxybutyrate Unknown 010 Unknown 161 Nicotinate Glyoxylate Glycerol 3 P Nicotinate Unknown 285 Glycerol 3 P Unknown 415 Unknown 133 Unknown 088 Unknown 088 Unknown 059 Unknown 285 Unknown 390 Glyoxylate Unknown 010 Unknown 133 4-Hydroxybutanoate Unknown 039 Unknown 059 Unknown 412 Unknown 097 Lysine! Unknown 089 Unknown 136 Unknown 039 Unknown 097 Unknown 136 Unknown 089 Glycerate Uracil 27 + 1 significant 26+1+11 significant

 H. Kanani and M.I. Klapa #. 2007. Data Correction Strategy for Metabolomics Analysis using Gas Chromatography-Mass Spectrometry, <u>Metabolic Engineering</u> 9:39-51
Kanani HH, Chrysanthopoulos P, Klapa MI. 2008. Standardizing GC-MS Metabolomics. <u>J. Chromatogr. B Analyt Technol Biomed Life Sci</u>. 871: 191-201

PCA- Metabolomic Data: Individual Stress Response

Microarray Time-series Significance Analysis

Dutta B, Snyder R, Klapa MI. <u>2007</u>. Significance Analysis of Time-Series Transcriptomic Data: A methodology that enables the identification and further exploration of the differentially expressed genes at each time-point. <u>Biotech. Bioeng.</u> **98**: 668-678.

Dutta et. al. 2008. Time-series integrated "omic" analyses to elucidate short-term stress-induced responses in plant liquid cultures. Biotech. Bioeng. (In Press; E-print Available)

Acknowledgements

Funding US NSF Grant: QSB-0331312, UMD Minta Martin Foundation, UMD Department of Chemical & Biomolecular Engineering, FORTH/ICE-HT Bayer HealthCare LLC

Thank you!