

The world leader in serving science

Precision Proteomics

Michaela Scigelova European LC-MS Marketing

'Promising' Proteomics Technologies ?

- Two-dimensional gel electrophoresis
- Protein arrays
- SELDI
- MS-based proteomics
 - Quantitative analysis of post-translational modifications
 - Determination of protein interactions
 - Integration of MS technology with other tools of molecular biology
 - Technology improvements in the last 5 years

The birth of a mass spectrometer

Ion Trap – does MS/MS and more

Linear Ion Trap Technology

Advancement in Sensitivity, Speed and Spectral Quality

Powerful hybrid mass spectrometer: LTQ FT

The Orbitrap Analyser

frequency of oscillation related to m/z

A. Makarov, **Anal. Chem 2000**, 1156-1162. *Electrostatic Axially Harmonic Orbital Trapping: A High-Performance Technique of Mass Analysis*

The case for high resolution and high mass accuracy

Goal:

- Precise and comprehensive analysis of complex mixtures
- Best achieved by using high-resolution mass spectrometric technologies

The importance of being highly resolved

Problem:

- Complex mixtures
- Coeluting compounds with similar m/z ratios

Compromised:

- Accurate mass analysis
- Charge state determination
- Accurate quantitation

Hormone Analysis

- Ethinyl estradiol in urine matrix
- 100 ppb

RP = 10,000

LC-MS trace

Hormone sample

н

Thermo Fisher

SCIENTIFIC

HO

Ethinyl Estradiol

Calculated 279.17434 Measured: 279.16263

SCIENTIFIC

Hormone sample

Resolution: 30,000

SCIENTIFIC

Hormone sample

Resolution: 100,000

Thermo

Resolution

Enables accurate mass

Example Pesticides in horse feed

Standard Pesticide Mixture in Horse Feed Matrix

Standard Pesticide Mixture in Horse Feed Matrix

Unusually high error of 6.5 ppm
Reanalyze @ higher resolution

Component	Elemental Compsition	[M+H]	Error [ppm]
Propoxur	C11H15NO3	210.1125	1.10
Chlortoluron	C10H13CIN2O	213.0789	1.20
Metribuzin	C8H14N4OS	215.0961	2.00
Atrazine	C8H14CIN5	216.1011	2.50
Diuron	C9H10Cl2N2O	233.0243	2.00
Carbetamide	C12H16N2O3	237.1234	1.20
Pirimicarb	C11H18N4O2	239.1503	6.50
Clomazone	C12H14CINO2	240.0788	0.10
Cyanazine	C9H13CIN6	241.0963	0.90
Linuron	C9H10Cl2N2O2	249.0192	1.20
Thiacloprid	C10H9CIN4S	253.0309	0.70
Triadimefor	C14H16CIN3O2	294.1004	0.30
Paclobutrazol	C15H20CIN3O	294.1368	1.40
Fenthion- sulfoxide	C10H15O4PS2	295.0222	2.00
Triadimenol	C14H18CIN3O2	296.1161	0.20
Imazalil	C14H14Cl2N2O	297.0556	1.70
Spiroxamine	C18H35NO2	298.2741	1.20

Standard Pesticide Mixture in Horse Feed Matrix

- Unusually high error of 6.5 ppm
- Indicates the need for higher resolution
- Reanalyse at 80,000 resolving power

Background Interferences in Pesticide Analysis

SCIENTIFIC

19

High resolution = more compounds detected

116 pesticides and mycotoxins **in single analysis Detected and Quantified** at 100 ppb level Mass tolerance 3 ppm

ETD Fragmentation Spectrum of ACTH

Implementation of Electron-Transfer Dissociation on a Hybrid Linear Ion Trap-Orbitrap Mass Spectrometer

The importance of being highly resolved

Problem:

- Large molecules with multiple charges
- Detection of isotopomers

Compromised:

- Charge state determination
- Monoisotopic mass of the macromolecule

Intact Protein Enolase ~46 kDa

Resolution: 100,000

Intact Protein Enolase ~46 kDa

Resolution: 100,000

The importance of being highly resolved

Problem:

- Large molecules with multiple charges
- MS/MS spectra are highly complex
- Overlapping isotope clusters from different fragments

Compromised:

- Maximum sequence coverage
- PTM identification and localisation

MS/MS of Enolase ~46 kDa

MS/MS of Enolase - Detail

Resolution: 100,000

Thermo Fisher

SCIENTIFIC

Resolution

is empowering

Coverage Map of Enolase Using ProSight PC

- A - V - S - K - V - Y - A - R - S - V - Y - D - S - R - G - N - P - T - V - E - V - E - L - T - T - y412 - I - V - P - S - G - A - S - T - G - V - H - E - A - L - E - M - R - D - V387 b26 - E - K - G - 5 -G-D+K-S-K-W-M-G-K-G-V-L-H-A-V-K-N-V-N-D-V+I-A-P-A-V362 - F - V - K - A - N - I - D + V - K - D + Q - K - A - V - D - D - F - L + I - S - L - D - G - T - A - y337 b101 - N - K - S - K - L - G - A - N - A - I - L - G - V - S - L - A - A - S - R - A - A - A - A - E - K - v312 b126 - N - V - P - L - Y - K - H - L - A - D - L - S - K - S - K - T - S - P - Y - V + L + P + V + P + F + V287 b151 · LÌNÌVÌLÌN-G-G-S-H-A-G-GÌA-L-AÌL-Q-EÌF-M-I-A-P-T-G- y262 b176 - A - K - T - F - A - E - A - L - R - I - G - S - E - V - Y - H - N - L - K - S - L - T - K - K - R - y237 b201 · Y - G - A - S - A - G - N - V d d D - E d d G d V d A P - N - I d d T d E - E - A d L - y212 b226 [D-L-I] V-D-A-I-K-A-A-G-H-D-G-K-V-K-I-G-L-D-C-A-S-S-V187 b251 - E - F - F - K - D - G - K - Y - D - L - D + F - K - N - P - N - S - D - K - S - K - W - L - T - G - y162 b276 - P-Q-L-A-D-L-Y-H-S-L-M-K-R-Y-P-I-V-S-I-E-D + P-F + A-E - V137 b301 | D - D - W - E - A - W - S - H - F - F - K + T - A - G - I - Q - I + V + A + D - D - L + T - V - T - y112 b326 - N - P - K - R - I - A - T - A - I - E - K - K - A - A - D - A - L - L - L - K - V - N - Q - I - G - y87 b351 - T - L - S + E - S - I - K - A - A - Q - D - S + F + A - A + G + W + G + V + M + V + S - H - R - S - y62 b376 - G - E - T - E - D - T + F + I + A + D + L + V + V + G - L - R - T - G - Q - I - K + T - G - A - P - y37 b401 - A - R - S - E - R - L - A - K - L - N t Q - L - L - R - I - E - E - E - L - G - D - N - A t V t F - y12 b426 tAtGtEtNtFtHtHtG-D-K-L-

101 matching fragment ions

Going Really Big

Resolution: 15,000

Bondarenko P, Zhang Z, "LC/MS Top-Down Analysis and Intact Mass Analysis of Recombinant Immunoglobulin Gamma Antibodies on Orbitrap," Amgen Inc, ASMS 2008 ThPL 278

Thermo Fisher

The importance of being highly resolved

Conclusions

 From a theoretical point of view there is no clear cut-off for desired mass resolving power

BUT

 In our experience 100,000 FWHM is both practical and desirable for complex peptide mixture analysis

How Accurate Is Accurate Enough

Problem:

- False positive identifications
- Unknowns

Compromised:

- Confident identification
- High throughput

Why is accurate mass useful?

- Example: mass 32
- What can it be ??

Accurate Mass Is a Powerful Filter

C = 12.0000	H = 1 $N = 14$.0078 1.0031	O = 15.9949 S = 31.9721
Mass measured	Tolerance [Da]	Suggestions	Calc Mass
32.0	+/- 0.2	O ₂ CH ₃ OH N ₂ H ₄ S	31.9898 32.0261 32.0374 31.9721
32.02	+/- 0.02	CH ₃ OH N ₂ H ₄	32.0261 32.0374
32.0257	+/- 0.002	CH₃OH	32.0261

Accurate Mass

Makes Life Easier

Precision of Mass Measurement

Angiotensin 10 pmol/ul + Glu-fibrinogen 10 fmol/ul

MS/MS Glu-Fibrinogen @10 fmol/ul

Thermo

Distribution of Mass Deviations

- Standard deviation 0.8 ppm (σ)
- Maximum deviation can be set to 2σ or 3σ (specificity vs. sensitivity)

Zubarev and Mann, MPC 2007 "On the proper use of mass accuracy in proteomics" ³⁹

Key Points about Accurate Mass

Conclusions

- The measured mass acts as a filter that reduces the number of potential false positive assignments
- Higher MA proportionately increases certainty of identification
- Peptide mass accuracy should be determined individually for each peptide
- Low ppm mass deviation on a chromatographic time scale is now routine with modern LTQ-FT hybrids

State-of-the-art technology: achievable average absolute mass deviations ~300 ppb

How Accurate Is Accurate Enough

In small-molecule world:

To provide a unique chemical composition

In shotgun proteomics:

- ~100 ppb for small tryptic peptides
- Chemical composition specified for small peptides
- "Database congestion" eases for higher masses
- Unique peptide candidate for larger peptides is likely

Peptide Identification – Effect of Mass Accuracy

Calculations courtesy of Dr. David Fenyo, Rockefeller University

Having a Database Limits the 'Search Space'

Chemical Composition vs. Sequence

Peptide	Accurate mass (calculated)
ADK	333.1769
DAK	333.1769
GEK (EGK)	333.1769

Amino acids differing by a methylene group $(-CH_2-)$

The mass itself is

not sufficient

for identification of the peptide

LTQ Orbitrap XL with ETD – Versatility

Different fragmentation techniques

ThermoFisher

SCIENTIFIC

Higher energy collision useful for phosphotyrosine

Phosphotyrosine diagnostic immonium ion

 Jesper V Olsen, Boris Macek, Oliver Lange, Alexander Makarov, Stevan Horning and Matthias Mann. *Higher-energy C-trap dissociation for peptide modification analysis*. Nature Methods 2007, 4, 709-712

Multiple levels of fragmentation – peptide MRFA

MARE SPECTROMETER.

Thermo Scientific LTQ Orbitrap" An Overview of the Scientific Literature

Michaele Scipilym and Darid Kasel, Thermy-Fither Scientific

is the three-years since its current shill debut (June 2009) the Therma Scientific Oblige maps are lear her been hericated in an excitive and maps are units. Then are of to upper limit region of permanents. solicities, in the width the second of time, there have been an enabled number of review problem on well as publications providing insight into the design and operation principles of the unders, Scienting primarily we observe in its technological development mean

Available of the publications, however, here focused on the rates tookels. of regions compound classes demonstrating the incredible versatility of the URL Orbitrap is built meansh and realities analyses. This report one the process of the scientific lighten when the Odding man project her been used.

Probable the much conful pitcheber of the Obligging and traiger to the MyR mateceneral utility for but small and base malegale projects, it is the projects of versamples ministers where the extension depends range and user of west shifts whithe USD Orbitrap can be buly appreciated, it current at no purprise there that must scientific papers are hyperbacked of pulsaria. The sound impediates of published anticles deals with the analysis of matchedge inclusive netabolity Settiltation structural dan stariotion and gate littly in the cycle of all metabalten studiet ersekasmentel strakeit. and Suphocurical Research Succedprecifically or metabolishing and fails profests has also undersed this saw behaviors.

Agence interpretent of a patient of a second stage in the first second strategy is patient. preventional grands with the evolution problem into a second

Perfort Theorem Sidher Universitie

Deping Centre

Overview of published literature LTQ Orbitrap

How Accurate Is Accurate Enough – Quantitation perspective

Problem:

- Complex mixtures
- Interferences of nearly isobaric compounds

Compromised:

- Detection limits
- Accurate quantitation

Ion Trap vs. Orbitrap Detection: 6 pg on column

Data courtesy of Giorgio Vago, Thermo Italy

Thermo Fisher

Ion Trap x Orbitrap Detection: 120 fg on column

Data courtesy of Giorgio Vago, Thermo Italy

Quantitation of Ghreline in Human Plasma Extract

Data courtesy of Giorgio Vago, Thermo Italy

The Second Generation Proteomics

- The comprehensive, quantitative and spatially resolved analysis
 - Expansion in scale
 - Protein interactions
 - In time and space

MS-Based Proteome Identification and Quantitation

 Schematic representation of the fraction of a proteome that can be identified or quantified by mass-spectrometry-based approaches.

- Cellular proteins span a wide range of expression
- Current mass spectrometers typically sample only a fraction of all proteins present
- Due to limited data quality, only a fraction of all identified proteins can also be reliably quantified

Thermo Fisher

Conclusions

- Resolution is empowering
- Resolution enables accurate mass
- Mass accuracy is a powerful filter
- Mass accuracy enables confident identification
- Both are indispensable for accurate quantitation

Acknowledgements

- Matthias Mann, MPI Martinsried
- Neil Kelleher, University of Illinois Urbana-Champagne
- Pavel Bondarenko, Amgen
- David Fenyo, Rockefeller University
- Giorgio Vago, Thermo Scientific Italy

Ultimately, ALL proteomics will be quantitative

-Ruedi Aebersold Dec. 17, 2004

