

LC-MS Applications in Metabonomics: from Toxicology to Disease Biomarkers

Elizabeth Want Biomolecular Medicine Imperial College, London

Challenges in Metabonomics MS platform and Metabonomics Strategies - Sample Preparation - Separation - Detection **Data Processing Metabolite Identification** Case Studies

Challenges in Metabonomics

Untargeted analysis Hundreds of molecules in complex matrices Wide concentration range of metabolites Vast amount of data generated **Data analysis Metabolite identification** Interpretation

Complementary to NMR Reproducibility **Sensitivity Dynamic range** Sample throughput **Structural information Quantitation Data analysis automation**

MS in Metabonomics

Cancer

• kidney & ovarian cancer, colorectal cancer, brain tumours

Toxicology

- COMET and COMET2
- **Disease biomarkers**
 - cardiovascular disease, diabetes

Nutrition

Effects of green tea, flavonoids

Plants

plant-host interactions, growth rate

Other organisms

yeast, fungi

Sample

type

Considerations

Chromatography Mass Spectrometer

Data Processing

Prior knowledge e.g. NMR data Metabolite Identification

Sample Preparation

Dependent on goal

- Untargeted analysis: minimal sample pre-treatment to prevent loss of metabolites
- Sample pre-concentration techniques i.e. SPE for low level metabolites

Serum/plasma

 Methanol/acetonitrile protein precipitation

Urine

Centrifugation & dilution

Faeces

Aqueous/organic extracts

UPLC-MS Base Peak Intensity Chromatgrams

Sample Preparation

Bile

Dilution 1:4 with water Centrifugation 13000rpm 10mins

Cerebrospinal fluid

Methanol protein precipitation (as serum/plasma)

Tissues e.g. liver

Chloroform: methanol extraction: aqueous and organic extracts

Separation

Liquid chromatography

Wilson ID et al.,. J Proteome Res. 2005. 4(2):591-8.

1.7um particle size columns can withstand higher backpressures and flow rates

MS: Ionisation and Detection

Electrospray ionisation (ESI)

- Can be interfaced to liquid chromatography
- Readily amenable to MS analysis
- No matrix necessary

Time of flight (ToF)

good mass accuracy

Quadrupole time of flight (Q-ToF)

good mass accuracy, MS/MS

Data Processing Workflow

Data Preprocessing

Objectives

Peak picking and alignment

'Matching' peaks across samples

Determination of differences between samples

Normalisation

Data Preprocessing Challenges

1) Dataset Complexity

Thousands of peaks Isotopes, adducts, dimers, fragments Noise Positive & negative mode data

2) Peak Shifts Temperature Mobile phase changes Stationary phase changes Sample composition

Importance of Alignment

Unaligned

General Preprocessing Approach

Software Options

Platform Independent Freeware

Katajamaa M, Oresic M. BMC Bioinformatics. 2005.18;6:179. Katajamaa M, Miettinen J, Oresic M. Bioinformatics. 2006. 22(5):634-6.

Duran AL, et al.,. Bioinformatics. 2003. 19(17):2283-93.

De Vos RC, et al.,. Nat Protoc. 2007;2(4):778-91. Tikunov Y, et al.,. Plant Physiol. 2005 Nov;139(3):1125-37.

Broeckling CD, et al.,. Anal Chem. 2006 Jul 1;78(13):4334-41.

Baran R et al., BMC Bioinformatics. 2006. 7:530

Smith CA, et al., Anal Chem. 2006. 78(3):779-87.

Metabolite Identification

Query databases

Isolate metabolite of interest (prep LC)

Obtain high accuracy mass data (FTMS)

Fragmentation data (MS^E, MS/MS)

Other spectroscopic techniques for further characterisation (NMR)

Purchase/synthesise standard

- Compare retention time
- Accurate mass
- Fragmentation

Metabolite Identification

Identification of Novel Brain Lipids

Identification of enzyme substrates by untargeted LC-MS analysis of WT and KO mouse brain

Brain lipids regulated by FAAH in vivo:

- known signalling molecules anandamide
- novel family of taurine-conjugated fatty acids

14332

Imperial College

London

Biochemistry 2004, 43, 14332-14339

Assignment of Endogenous Substrates to Enzymes by Global Metabolite Profiling[†]

Alan Saghatelian, Sunia A. Trauger, Elizabeth J. Want, Edward G. Hawkins, Gary Siuzdak, and Benjamin F. Cravatt*

Imperial College London **Unknown Brain Lipids Regulated by Fatty Acid Amide Hydrolase (FAAH)**

MS/MS: Structural Information

Imperial College

Highly related fragmentation patterns for the unknown metabolites

FTMS: Accurate Mass

Confirmation of Identification

<u>LC-MS</u> Co-migration of natural and synthetic NATs

Spectrum of endogenous metabolite matched the C24:0 NAT standard

MS Studies in Biomolecular Medicine

Imperial College

London

1) Toxicology: COMET 2 Project

GalN-induced hepatotoxicity

- Selective hepatotoxin:produces dosedependent, reversible liver damage
- Morphologically and biochemically similar to human hepatitis
- Severity of the response to galN is often quite variable
- Mechanism not yet fully resolved:
 - depletion of uridine nucleotide levels which inhibits RNA and protein synthesis (uridine or precursors protect)
 - alters gut permeability and increases bacterial translocation leading to endotoxemia (co-administration of LPS increases toxic response)
- Glycine protects against liver damage

Control

24 hr after GalN

R.F. Stachlewitz, et al. (1999) Hepatology 29:737

GalN-induced hepatotoxicity

- Selective hepatotoxin:produces dosedependent, reversible liver damage
- Morphologically and biochemically similar to human hepatitis
- Severity of the response to galN is often quite variable
- Mechanism not yet fully resolved:
 - depletion of uridine nucleotide levels which inhibits RNA and protein synthesis (uridine or precursors protect)
 - alters gut permeability and increases bacterial translocation leading to endotoxemia (co-administration of LPS

increases toxic response)

Glycine protects against liver damage

Control

24 hr after GalN

R.F. Stachlewitz, et al. (1999) Hepatology 29:737

Intra-animal Variability

Protective Effect of Glycine

2) Organic Acidurias

AIM: to evaluate the applicability of UPLC-MS for the identification of organic acidurias

Urine samples were screened from patients with five different organic acidurias

Urinary Metabolite Profiles

Ileo-anal pouches created in the management of some patients with ulcerative colitis

Proportion of these patients develop pouchitis

Inflammation of pouch lining

AIM: to determine cause of pouchitis

Metabonomic analysis of plasma, urine & faeces

NMR and UPLC-MS

UPLC-MS data processed using **XCMS**

Elevated Faecal Lipids in Pouchitis

Imperial College

London

Summary

Mass spectrometry-based metabonomics studies can offer

- Sensitivity
- Reproducibility
- Sample throughput
- Complementary information to NMR

Strategy varies depending on question being asked

Need to consider

- Sample preparation
- Separation approaches
- Mass spectrometer
- Data analysis

Challenges still remain in data analysis

Software & databases

Acknowledgements

Imperial College London

Waters

Acknowledgements and thanks to all of the past and present members of the Imperial College team who have provided ideas, data and results and who are listed on the slides

Faculty: Prof Jeremy Nicholson, Prof Elaine Holmes, Dr Olaf Beckonert, Dr Tim Ebbels, Dr Hector Keun, Dr Elizabeth Want

Research Associates: Dr Anthony Mayer, Dr Muireann Coen, Dr Andy Clayton, Dr Alison Campbell, Dr Selena Richards, Dr Derek Crockford, Dr Matthias Rantalainen, Dr Toby Athersuch, Dr Rachel Cavill, Jake Pearce

Waters: Rob Plumb. John Shockor, Emma Marsden-Edwards